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Abstract—Applying knowledge representation and reasoning
to downstream tasks has been considered a promising research
direction, as it enables semantic analysis of network protocols.
Knowledge Graph is a new way of collecting knowledge, and
building a protocol knowledge graph based on RFCs can help us
study and analyze network protocols more effectively. However,
automatically constructing a protocol knowledge graph from
RFCs poses a major challenge, particularly in terms of extracting
and linking protocol entities, due to the semi-structured nature
of RFC documents. In this paper, we propose a model that
combines a fine-tuned language model with an RFC Domain
Model to link entities in RFCs to categories in the protocol
knowledge base. Firstly, we design a protocol knowledge base as
the schema for protocol entity linking. Secondly, we use heuristic
methods to identify protocol entities and infer their descriptions
from the nearby contexts of their header fields. Finally, we
conduct comprehensive experiments on the RFC dataset using
our joint model and baseline methods for protocol entity linking.
Experimental results demonstrate that our model achieves state-
of-the-art performance in entity linking on the RFC dataset,
outperforming all baseline methods. In addition, we release a
protocol knowledge graph, RFC-KG1.

Index Terms—Request for Comment, Entity Linking, Knowl-
edge Graph, Protocol Analysis

I. INTRODUCTION

Knowledge representation and reasoning based on ontol-
ogy have become hot topics in research and application of
network protocols. Garg et al [12] employed the ontological
approach to expand the information on attacks and facilitate
better prevention of such attacks by leveraging the advanced
reasoning capabilities inherent in ontologies. Labonne et
al [19] presented an unsupervised anomaly-based intrusion
detection solution that can detect previously unseen network
attacks, focusing on protocol header analysis. Zheng et al [43]
generated an ontology using deep learning through neural
network embeddings to enhance intelligent intrusion detection
for cybersecurity. Khurat et al [17] proposed an ontology
for SNORT rules to support the verification of SNORT rules
using OWL ontology. Jero et al [16] learned protocol rules
from RFC documents for six protocols (GRE, IPv6, IP, TCP,
DCCP, and SCTP) to identify software vulnerabilities by
injecting well-formed inputs generated based on rules that
encode application semantics. However, existing methods for
constructing network knowledge based on protocols are lim-
ited to specific protocols or specific application scenarios. The

1url:http://39.104.126.169:7474/browser/,user:neo4j, pwd:123456

Fig. 1. Knowledge-based Protocol Analysis Process. This network data flow
may be a variant of RFC-I or is the instance of RFC-II.

acquired knowledge has certain shortcomings, such as small
scale, weak generalization ability, and dependence on manual
expert experience. To address these issues, it is necessary
to build a protocol knowledge base from a larger and more
standardized protocol corpus using automated construction
methods.

Utilizing the knowledge reasoning ability of the knowledge
map, network protocol analysis tasks can be performed more
intelligently. As shown in Figure 1, firstly, protocol classi-
fication methods ( [5], [22], [23], [31], [38]) are used to
analyze the protocol information of a network packet segment,
such as the protocol field headers. Secondly, the knowledge-
based protocol method is used to identify which RFC protocol
the packets belong to (RFC-II). In particular, some protocol
variants can also be identified (RFC-I). Building a knowledge
base in the field of network protocols is significant for network
analysis. Methods of knowledge base construction based on
expert experience are time-consuming and labor-intensive,
while automated construction methods require large-scale,
standardized corpora. Request for Comments (RFCs)2 have
since become official documents for Internet specifications,
communications protocols, procedures, and events. RFCs con-
tain both structured and unstructured information and provide
the fundamental corpus for automatically constructing a larger-
scale network protocol knowledge base. Structured informa-
tion includes RFC number, title, subtitle, abstract/introduction,

2https://www.rfc-editor.org/
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Fig. 2. Examples of Various Writing Styles in RFCs. Header field ”Verion” is written as ”Version” in RFC791, whereas ”V” is used in RFC3451. Header field
”Header Length” is written as ”IHL” in RFC791, whereas ”HDR LEN” is used in RFC3451. Header field ”Flag” is written as ”Flag” in RFC791, whereas
every flag bit is displayed in RFC3451.

and date of publication, while unstructured information refers
to the natural language text describing the purpose/body of
RFCs. Our main observation is that there is much hidden
knowledge in the RFCs that can help us analyze network pro-
tocols. For example, mining the associations between protocols
(field similarity, state machine similarity, etc.) can provide a
clearer and more intuitive understanding of the development
of specific protocols.

Knowledge graphs are an effective way to represent seman-
tic real-world facts in a structured form. A knowledge graph
is a collection of triplets, each indicating a piece of fact in
the form of (Head-Entity, Relation, Tail-Entity). In the era of
knowledge engineering, numerous KGs, such as YAGO [26],
WordNet [25], DBpedia [20], and Freebase [4], have been
developed. KGs contain a large amount of prior knowledge
and can effectively organize data. Knowledge graphs have
been widely adopted and have shown promising benefits in a
wide range of applications, such as information retrieval, ques-
tion answering, and knowledge reasoning. Additionally, facts
extracted from specific domains convey domain knowledge
that is usually only accessible to experts in those areas. Most
existing works on Knowledge Graph Construction share sev-
eral limitations, such as the requirement for sufficient external
resources like large-scale knowledge graphs and concept on-
tologies as the starting point. However, such extensive domain-
specific labeling is highly time-consuming and requires ex-
pertise, especially in the field of network protocol analysis.
Therefore, the construction of knowledge graphs conveying
domain knowledge, especially for network protocol analysis,
is of great significance to the success of many domain-specific
real-world applications related to protocols.

In this paper, we present the construction of a domain-
specific knowledge graph, RFC-KG, which enhances the
breadth and depth of knowledge in the field of network
communication using the IETF database. We aim to fully
exploit the potential knowledge within RFC documents to
facilitate better analysis of network protocols. While RFC
documents provide precise specifications, such as RFC5385
which defines the writing template, and RFC7322 which
stipulates the writing style, the writing styles of authors differ
significantly (Fig. 2). Additionally, some RFC documents

even have distinct layouts, presenting significant challenges
for Entity Linking (EL) in RFC-KG. EL is a vital process
in the construction of RFC-KG, as it involves recognizing
and disambiguating named entities in RFCs and linking them
to a Protocol Knowledge Base (PKB) (Fig. 3), defined by
domain-specific experts. To address this, we propose a novel
model, RFC-BERT, which combines a fine-tuned model with
an RFC Domain Model to tackle the EL task in RFCs. Our
experimental results demonstrate that our model outperforms
all baselines, achieving Precision, Recall, and F1-score of
73.70%, 74.70%, 74.20% on the RFCs dataset.

In summary, our contributions are as follows:
1. Through a comprehensive analysis of over 8000 RFC

specifications, we design a Protocol Knowledge Base (PKB)
as the protocol domain schema, which serves as a guide for
the subsequent protocol entity linking work.

2. To the best of our knowledge, RFC-KG is the first
knowledge graph specific to RFCs, providing researchers with
the ability to analyze and utilize protocols in a more granular
manner.

3. We propose the RFC-BERT model, which combines
a fine-tuned language model with an RFC domain model.
Our model achieves superior performance in the RFC Entity
Linking task, surpassing all baselines.

In the subsequent sections, we first provide an overview
of related research, followed by a detailed description of the
experimental process and an elaboration of the evaluation
methods. Lastly, we provide concluding remarks.

II. RELATED WORK

A. Entity Linking

Entity Linking (EL) is the task of linking entity mentions
in text to their corresponding ontologies. Most EL approaches
aim to link mentions to a comprehensive Knowledge Base
(KB) [40]. Recent approaches utilize neural networks [11],
[35] to capture the correspondence between a mention’s con-
text and a proposed entity in the KB. Graph-based [14], [41]
and various joint methods [18], [24] are also widely used.
In addition to linking to KB, there are also approaches that
perform EL on ad-hoc entity lists [21]. In our experiment, we
focus on the former, namely EL on KB. We aim to bridge the
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Fig. 3. Overview of Entity Linking in RFCs. I. Entity Extraction. II. Context Inference. III. Entity Linking.

gap between mentions in real-world text and entities in well-
established theoretical schemas. Jero et al. [16] conducted a
similar study, linking mentions from RFC documents to a list
of ontologies to generate grammar-based fuzzing. With limited
training data, they generalized this problem by assigning the
property with the maximum keyphrase overlap to a header
field.

B. Fine-tuning BERT for Classification

Pre-trained language models [10], [15], [30] have be-
come a robust approach for EL. They capture rich language
information from text by integrating pre-trained language
representations with downstream tasks, thereby improving
accuracy in many NLP applications. Among these models,
BERT [10] has emerged as the most prominent in recent
NLP studies. Through its self-attention mechanism, BERT
encodes bidirectional contextual information at the character-
level, word-level, and sentence-level, reducing discrepancies
among single words. Fine-tuning BERT has also demonstrated
optimal results in various downstream tasks, including Named
Entity Recognition [32], Text Classification [34], and EL [6].
However, the initial BERT pre-training was conducted on
generic datasets, such as Wikipedia and Book Corpus, for
general purposes. It lacks domain-specific knowledge from
RFCs. Our experiments have shown that standalone fine-tuned
BERT is insufficient to achieve highly accurate EL in RFCs.

C. Learning with Scarce Annotations

In this paper, we also address the issue of data scarcity.
Since our dataset is manually annotated, alleviating data

scarcity enables us to train our model on a relatively small
dataset, thus significantly reducing human effort. Transfer
learning (TL) has been widely applied in previous research
[1], [13], where classifiers trained on large datasets similar to,
but not the same as, the target dataset are used to perform
new tasks. Active Learning (AL) is another approach to
dealing with data scarcity [3], [37]. AL selects queries or
sub-spans that are most informative and improves its learning
results through iterative processes. Bootstrapping, a widely
used technique in Entity Set Expansion (ESE) [7], [39],
enables classifiers to use their own predictions to enhance their
performance, resulting in enriched datasets by acquiring new
samples in each iteration. In our experiment, we utilize AL
and Bootstrapping methods.

III. PRELIMINARY

In this section, we introduce two important concepts used
in our work.

a) Abstract Concept: The term ”abstract concept” refers
to phrases that contain little semantic information. They are
either short, consisting of a few words, or highly specialized
terminologies in a specific domain. When trained using a
pre-trained language model, the information from abstract
concepts is often overshadowed by the dominant preferences
in the general corpus where the language model is initially
trained. However, these abstract concepts preserve highly
valuable information about the specialized domain, which is
crucial for solving domain-specific problems.

b) Narrative Description: The term ”narrative descrip-
tion” refers to a text chunk that conveys abundant semantic
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Fig. 4. RFC-BERT Model Architecture

information. However, this information is oftentimes too gen-
eral and insufficient for performing domain-specific tasks.

In our task specifically, abstract concepts refer to RFC (Re-
quest for Comments) header fields, and narrative descriptions
refer to the texts describing these header fields.

IV. APPROACH

In this section, we provide detailed explanations of the
implementation details of our RFC-BERT model (Fig. 4).

I. Input: The input consists of header descriptions concate-
nated with header fields. The header field is parsed through
header graphs (Fig. 3), while the description is the text chunk
that references its corresponding header field. We infer the
description from the nearby contexts of its header field using
Zero-Shot Learning (ZSL) [28], similar to Jero [16].

II. Word Embeddings: We first tokenize the text into
tokens as the basic units. To improve performance, we use 64-
dimensional Glove word embeddings [29] that are pre-trained
on a corpus consisting of 6 billion words from Wikipedia and
Gigaword. These embeddings serve as the initial vectors for
the corresponding words. Additionally, inspired by [33], we
observe that there are obvious part-of-speech (POS) patterns
or templates present in header field descriptions. Intuitively, in-
corporating POS tag information into word representations can
enhance semantic understanding by introducing explicit lexical
information. Therefore, we augment word representations with
POS tag information to enhance their features. Specifically,
each type of POS tag is initialized as a random vector with a
uniform distribution and is optimized during training. Hence,
each word can be represented as Ei = [ wei ⊕posi ], where

wei represents the corresponding word embedding and posi
represents the embedding of the POS tag of the word.

III. Fine-tuned BERT: The word embeddings for the
description, denoted as E(CLS), Ed1, Ed2, ..., Edn, E(SEP ),
are fed into the BERT model. The output, denoted as

−−→
HSdesc,

represents the deep semantic features for the description.
−−→
HSdesc = BERT (E(CLS), Ed1, Ed2, ..., Edn, E(SEP ))

(1)
IV. RFC DOMAIN MODEL: The RFCDomainModel takes
the word embeddings of header fields denoted as Eh1, Eh2, ...,
Ehn as input, which can be one of BPNN [36], CNN [8], or
Bi-GRU [9]. Its output is

−−→
HSheader.

−−→
HSheader = RFCDomainModel(Eh1, Eh2, ..., Ehn) (2)

where RFCDomainModel can be BPNN [36], CNN [8], or
Bi-GRU [9].

V. FUSION LAYER: The fusion layer combines the out-
puts of BERT and RFCDomainModel, resulting in HSA.

−−→
HSA =

−−→
HSheader

⊕−−→
HSdesc

= [Ed1 + Eh1, Ed2 + Eh2, ..., Edn + Ehn]
(3)

VI. SOFTMAX LAYER: The output of the fusion layer
is processed by the softmax function, resulting in multi-class
probability values. The maximum probability value, Result,
represents the classification result, belonging to one specific
class in PKB, for the current inputs. This process can be
formalized as follows:
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Result(
−−→
HSA) = max(softmax(

−−→
HSA))

= max

{
escore1∑n
j=1 e

scorej
, ...,

escoren∑n
j=1 e

scorej

}
(4)

where n is the total number of PKB classes (constant 12), and
scorei is the probability of belonging to one class in PKB.

V. EXPERIMENT

Our experimental data is extracted from RFCs. The work-
flow of constructing the knowledge-based dataset can be
summarized as follows:

A. Experimental Setup

Protocol Knowledge Base:
We carefully analyzed more than 8000 RFC documents and

designed a protocol knowledge base (Fig. 3).
Data Preparation: In our experiment, each training sample

consists of a header field, a description text that describes this
header field, and a label (belonging to PKB), represented as a
triple: (Header Field, Description, Label). For example, (IHL,
4 bits Internet..., Length) (Fig. 3 Label Data). We extracted
Header Fields and Descriptions from RFCs.

VI. PRE-PROCESS

We begin by downloading all plain text files of RFCs from
the official website of RFC-editor. Despite the varied writing
styles in RFCs, we have identified certain patterns in the
description of header fields and the corresponding passage.
Typically, these descriptions consist of two parts separated
by different spacings. The first column indicates the field
name, while the second column contains detailed explana-
tions. Additionally, each RFC includes a graph providing an
overview of the entire data frame for the protocol. Moreover,
we observe consistent graphs of data packets across numerous
RFC documents. For example, vertical bars act as delimiters
between adjacent fields, and each line consists of 32 bits
outlined with plus and minus signs.

Based on these patterns, we establish a set of binary
features related to character-level characteristics, writing style,
and context. These features encompass capitalization, term
frequency, and indicative punctuations such as colons. By
leveraging these binary features, we are able to extract field-
description pairs. We narrow down our data source to 921
RFCs out of the initial set of over 8000 RFCs. By employing
this rule-based approach, we successfully extract 11020 field-
description pairs in a relatively standard format.

RFC documents are plain text files that include page breaks
and page headers to facilitate printing. We identify and elimi-
nate these page breaks and headers. RFCs follow a structured
format where the document is divided into multiple sections,
each focusing on a specific topic, such as a packet field,
protocol state, or particular action. Our analysis reveals that
this structure is highly beneficial for extracting entity types.
Consequently, we maintain the structure by parsing the text

itself into a hierarchical structure of sections. Each section
includes a header line, body text, and potentially subsections.

VII. ENTITY EXTRACTION

The task of Entity Extraction involves extracting all header
fields in each RFC document. The preserved document struc-
ture from the pre-processing step enables us to extract this
information using a simple rule-based system. Specifically,
each packet field entity is sequentially described within a
section, with the section title indicating the name and size of
the entity. Therefore, we scan all section headers in the docu-
ment. High-level section headers, which begin with numbers
and lack function words, represent packet types. On the other
hand, section headers without numbers and function words
indicate packet fields and maintain a specific packet order. To
parse each section header, we search for a colon separating the
entity’s name from its size and for commas or the word ”and”
indicating multiple entities within a single section header. This
process generates a list of entities along with their sizes and
order.

VIII. GROUND-TRUTH LABELING

Given the lack of an existing dataset for a similar protocol
entity linking task, we manually label field-description pairs
to establish the golden standard. To ensure accuracy in the
labeling results, we form an inspection team consisting of
four individuals. We establish criteria for each entity in our
knowledge base, as shown in Figure 3, which we utilize for
labeling field-description pairs. The labeling results from each
team member undergo scrutiny from other group members.
Only when full agreement is reached is a pair included in our
dataset. In total, we collect 2858 valid pairs.

The distribution of samples for each feature is presented in
Table 1.

IX. INTRODUCTION

This section presents a comparison of different implemen-
tation methods of domain models based on the following
metrics: serial number, boolean, identifier, version, checksum,
encryption data, padding code, length, timestamp, offset, data,
and reserved. These metrics are commonly used in the field
and provide valuable insights into the performance of the
models.

X. TRAINING

A. Model Configuration

All of our models (RFC-BERT-a, RFC-BERT-b, RFC-
BERT-c) consist of 12 transformer blocks, 768 hidden units,
and 12 self-attention heads. For RFC-BERT, we initialize it
using BERTBASE and then fine-tune the model for six epochs
with a learning rate of 2e−5. During training and testing, the
maximum text length is set to 10 tokens [42]. This limit is
chosen because header fields often consist of short phrases in
RFCs.
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TABLE I
COMPARISON OF DIFFERENT IMPLEMENTATION METHODS OF DOMAIN MODELS

Serial Number 270
Boolean 290
Identifier 175
Version 520
Checksum 370
Encryption Data 61
Padding Code 300
Length 100
Timestamp 90
Offset 170
Data 302
Reserved 210

B. Baselines

In this subsection, we compare our method against several
baselines including SVM [27], BPNN [36], CNN [8], Bi-
GRU [9], and Adhikari et al [2]. We carefully tune the
hyperparameters of the baselines to ensure fair comparisons.
All the baselines take the word embeddings of the header and
description as their inputs.

Adhikari et al [2] proposed a classification model based on
a joint network of Bi-LSTM and Max-Pooling. We include
this model as one of our baselines, as well as its succeeding
model based on BERT.

1) SVM [27]: We train the SVM model using stochastic
gradient descent. The constraints are adjusted using L2 Reg-
ularization, and the margin is set to 1.0. Other parameters are
initialized randomly.

2) BPNN [36]: All parameters of the BPNN model are
initialized randomly. We set the dropout rate to 0.1 to avoid
overfitting and adopt an adaptive gradient descent strategy
during training.

3) CNN [8]: We use three kernels during the convolution
process, each with a size of 3 * 768. The size of the kernels
in the max-pooling phrase is 2 * 2. The batch size is set to
1, and the dropout rate is 0.1. The output is sent into a linear
layer and a softmax layer for predictions.

4) Bi-GRU [9]: Bi-GRU acts similarly to the memory cell
in the LSTM network. All parameters are initialized randomly.
We concatenate the output and use the same linear and softmax
layers as the CNN model for post-processing the output.

5) Adhikari et al [2]: The model takes word embeddings
as its input. We concatenate the outputs into a linear layer and
a softmax layer. The size of the kernels in the max-pooling
phrase is 2 * 2, and the dropout rate is set to 0.1.

To assess the impact of header fields on the experiment,
all the baselines do not consider header information. Addi-
tionally, we use 8000 iterations to approximate the number of
epochs in BERT for SVM, BPNN, CNN, and Bi-GRU. We
set the learning rate for all the baselines to 2e−2 for faster
convergence.

XI. EVALUATION AND ANALYSIS

In this section, we provide an evaluation of our model and
analyze the results. We report the accuracy (Acc), average
precision (AvgP ), average recall (AvgR), and average F1-value
(AvgF ) for all categories in the schema using 10-fold Cross
Validation.

A. Evaluation Metrics

Acc represents the accuracy of the model on the training set.
AvgP , AvgR, and AvgF represent the average precision, recall,
and F1-measure across all categories in PKB, respectively.

To calculate these metrics, we use the following formulas:

Acc =

C∑
a=1

TP (a)

N
(5)

AvgP =

C∑
a=1

TP (a)

TP (a) + FP (a)
(6)

AvgR =

C∑
a=1

TP (a)

TP (a) + FN(a)
(7)

AvgF =
2×AvgP ×AvgR
AvgP +AvgR

(8)

Here, TP (a), FP (a), and FN(a) represent the true pos-
itives, false positives, and false negatives, respectively, for
category a. C is the total number of categories, and N is
the total number of samples.

B. Comparison on Different Implementations of RFC-BERT

We evaluate RFC-BERT using three different non-linear
layers: BPNN [36], CNN [8], and Bi-GRU [9]. The statistics
are shown in Table IV.

The results show that RFC-BERT based on Bi-GRU
achieves the best performance on our dataset, achieving the
highest accuracy of 72.9% and highest F1-value of 74.2%.
However, since CNN is not able to capture contextual informa-
tion effectively, its performance is inferior to that of BPNN and
Bi-GRU. Bi-GRU, being derived from RNN, is better suited
for handling segmented information. Therefore, we choose Bi-
GRU as the RFCDomainModel in RFC-BERT.
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TABLE II
THE PERFORMANCE ACHIEVED BY DIFFERENT APPROACHES

2*Exp. Group Model Performance 2*Learning Rate

Acc AvgP AvgR AvgF
3*Our Approach RFC-BERT-a (BPNN) 72.4% 73.9% 74.3% 74.1% 2e−5

RFC-BERT-b (CNN) 49.6% 51.3% 53.0% 52.1% 2e−5

RFC-BERT-c (Bi-GRU) 72.9% 73.7% 74.7% 74.2% 2e−5

TABLE III
THE RESULTS OF ABLATION STUDY

Exp. Group Model Acc AvgP AvgR AvgF Learning Rate
Baselines SVM [27] 10.8% 10.4% 10.8% 10.6% 2e−2

BPNN [36] 55.8% 47.8% 48.7% 48.2% 2e−2

CNN [8] 48.0% 44.5% 45.2% 44.8% 2e−2

Bi-GRU [9] 53.6% 44.9% 41.3% 43.0% 2e−2

Adhikari [2] 57.6% 48.3% 48.3% 48.3% 2e−2

Our Approach RFC-BERT 72.9% 73.7% 74.7% 74.2% 2e−5

TABLE IV
COMPARISON OF DIFFERENT IMPLEMENTATIONS OF RFC-BERT

Exp. Group Model Acc AvgP AvgR
AvgF Learning Rate

BERTonly Fine-tuned BERT 69.8% 72.7% 72.2%
72.4% 2e−5

3*RFCDomainonly BPNN 47.3% 50.2% 48.5%
49.4% 2e−5

CNN 35.5% 33.5% 34.9%
34.2% 2e−5

Bi-GRU 60.8% 64.1% 64.1%
64.1% 2e−5

1*BERT+DomainJoint RFC-BERT-c (Bi-GRU) 72.9% 73.7% 74.7%
74.2% 2e−5

C. Comparison with Baselines

Our approach, RFC-BERT, achieves the best performance,
as demonstrated by the statistics presented in Table II and
Figure 5. The Precision, Recall, and F1-score are 73.70%,
74.70%, and 74.20%.

D. Analysis

We can draw an analogy between language models pre-
trained on generic corpora and human beings. These models
achieve decent results for descriptive texts because they can
encode contextual information. However, our experimental
results illustrate that they fail to comprehend Abstract Con-
cepts like header field. For example, the header field “IHL”
(Figure 2) is an abstract concept in the protocol domain.
Domain-specific information cannot be inferred from its lex-
ical presentation. Thus, we are unable to link it to specific
categories in the Protocol Knowledge Base (PKB). In our
approach, we not only use domain knowledge to fine-tune
BERT but also design a domain model to explicitly learn
domain-specific knowledge from these header fields. Finally,

Fig. 5. Performance achieved by different approaches

we combine these two models in our RFC-BERT model, which
utilizes BERT Model to capture the deep semantic information
of the Narrative Description (such as the description chunk
text of the RFC header field) and uses the domain model to
learn the semantic information of Abstract Concepts (such
as the RFC header field). The experimental results showed
that our approach significantly outperformed the five baseline
approaches.

XII. ABLATION STUDY

A. Evaluation of the Performance of the Joint Model

This set of experiments is designed to evaluate the impact
that header fields have on classification, specifically whether
the RFCDomainModel contributes to increasing FAvg . The
results are shown in Table III.

The accuracy of fine-tuned BERT is 69.8%. The individual
RFC Domain Model also achieves inferior results. However,
when the RFCDomainModel is combined with BERT, the ac-
curacy reaches 72.9%, which is higher than using only BERT
or the RFCDomainModel independently. This suggests that the
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fusion of the domain model and the fine-tuned language model
can improve the performance by incorporating domain-specific
knowledge. Therefore, we choose RFC-BERT-c (Bi-GRU) as
our final model.

B. Using the RFC Domain Model to Handle Header Fields

Given the fact that BERT is suitable for processing texts
with sequential relations, appending header fields to the de-
scriptions will introduce false information, leading BERT to
wrongly associate the header fields and descriptions appear-
ing in adjacent contexts. This hinders BERT’s performance.
Therefore, directly concatenating header fields to descriptions
is not appropriate. As a result, we do not solely rely on
applying BERT to our entity linking task with header fields
concatenated with descriptions as input.

C. Using Neural Network to Handle Header Fields

We consider using neural networks, such as Bi-GRU and
BPNN, as the domain model to handle header fields inde-
pendently, rather than a Pre-training Model. This is because
our RFC dataset is much smaller compared to the large
corpora that BERT is pre-trained on. The heuristic knowledge
acquired by BERT from generic corpora largely compromises
the valuable domain-specific information contained in our
dataset. By training a model explicitly for header fields, we
can fully exploit the domain knowledge contained in them.

XIII. APPLICATION

In this paper, we deploy our RFC-BERT model to perform
the entity linking task on over 8000 RFCs. We extract all
the header fields and feed the resulting RFC triplet data into
the Graph Database neo4j3 to construct the domain-specific
knowledge graph of RFCs, RFC-KG, which contains 29,880
entities and 5,409,158 relationships.

Fig. 6. Correlation analysis of header fields in RFC 791 (Internet Protocol),
RFC: red color, Header Fields of RFC: green color

3https://github.com/neo4j/neo4j

Fig. 7. The evolution of RFC 791 (Internet Protocol), RFC: red color

XIV. CONCLUSION AND FUTURE WORK

In this paper, we propose a joint model to automatically
extract protocol entities from RFCs and link them to PKB.
The experimental results demonstrated that our approach
significantly outperformed five baseline approaches with an
average precision, recall, and F1-score of 73.70%, 74.70%,
74.20%, respectively. By deploying the RFC-BERT model, we
were able to generate the domain-specific knowledge graph
of RFCs, referred to as RFC-KG. In the future, we plan to
optimize the RFC-BERT model and evaluate the effectiveness
of RFC-KG in real-world applications.
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