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Abstract—In the digital era, the widespread use of video
content has led to the rapid development of video editing
technologies. However, it has also raised concerns about the
authenticity and integrity of multimedia content. Video splicing
forgery has emerged as a challenging and deceptive technique
used to create fake video objects, potentially for malicious
purposes such as deception, defamation, and fraud. Therefore,
the detection of video splicing forgery has become critically
important. Nevertheless, due to the complexity of video data and
a lack of relevant datasets, research on video splicing forgery
detection remains relatively limited. This paper introduces a
novel method for detecting video object splicing forgery, which
enhances detection performance by deeply exploring inconsistent
features between different source videos. We incorporate various
feature types, including edge luminance, texture, and video
quality information, and utilize a joint learning approach with
Convolutional Neural Network (CNN) and Vision Transformer
(ViT) models. Experimental results demonstrate that our method
excels in detecting video object splicing forgery, offering promis-
ing prospects for further advancements in this field.

Index Terms—Video splicing forgery, Multi-view feature learn-
ing, Object-level forgery detection

I. INTRODUCTION

In the digital era, the rapid dissemination of video content
and the widespread use of video editing techniques have raised
significant concerns about the authenticity and integrity of
multimedia content [1–4]. Among various forms of digital
content manipulation, video splicing forgery has emerged as a
challenging and deceptive technology. Video splicing is com-
monly employed to introduce fabricated elements, involving
the synthesis of objects or scenes from different sources to
create fraudulent videos. Such manipulated videos can be
used for various malicious purposes, including misinformation,
defamation, and fraud. The widespread propagation of video
object splicing poses a substantial threat to the credibility of vi-
sual information in an increasingly digital and interconnected
world. Therefore, the need for robust and effective methods to
detect video object splicing forgery has become paramount,
even in the face of advanced adversarial attempts.

While techniques for detecting image manipulation have
made some progress and various methods exist for image
splicing detection, the research on video tampering localization
is still relatively limited. Some image splicing detection meth-
ods utilize cues such as edge artifacts [1], pixel traces [1, 5],
incongruities in physical lighting [6], and compression artifacts

[7] to distinguish spliced regions originating from different
sources. However, due to the inherent complexity of video
data and the lack of publicly available video datasets, research
on video tampering localization techniques remains underex-
plored. The challenge in detecting video splicing forgery lies
in the fact that the spliced objects may come from entirely
different real-world scenes, and common deep learning-based
forgery artifacts, such as unnatural pixel or boundary artifacts,
may not be present [1, 8]. Existing methods are often based
on these forgery artifacts, which may explain their suboptimal
performance in extracting inconsistency information.

To enhance the performance of splicing content detec-
tion, the key lies in delving deeper into the incongruity
traces between two dissimilar source videos. It is observed
that two non-homogeneous images/videos typically originate
from different scenes, resulting in disparities due to dis-
tinct shooting angles, lighting conditions, camera settings, or
other factors. These differences encompass visual effects (e.g.,
color/brightness variations, lighting inconsistencies, camera
noise), disparities in resolution and frame rates, variations in
splicing effects (e.g., transition effects, brightness changes at
splicing edges caused by frame translation and scaling), as
well as motion continuity and perspective changes. Another
challenge is the continuous advancement of video editing
and processing techniques. Spliced videos may undergo a
series of alterations, such as re-rendering, re-recording, and
re-compression, potentially compromising or erasing the dis-
parities and artifacts that may have originally existed. This
further complicates the detection task, necessitating the design
of an effective feature extraction network and methodology.

Semantic segmentation is a pivotal computer vision tech-
nique that plays a crucial role in object splicing detection.
Semantic segmentation, by assigning each pixel in an image to
different semantic categories, aids in precise object boundary
localization, identifying distinct objects, providing rich image
descriptions, and improving the performance of segmentation
networks [9–11]. By incorporating the knowledge of semantic
segmentation, a better understanding and segmentation of
spliced objects can be achieved. We introduce an effective net-
work that combines the local feature learning of Convolutional
Neural Networks (CNNs) with the global feature learning of
Visual Transformers (ViTs) to fuse and learn incongruous
features within splicing of two non-homogeneous videos.
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In the process of addressing these challenges, this paper
draws inspiration from the progress made in image splicing
detection and extends it to the field of video object splicing
forgery detection. We initially extract information such as
video texture, quality, and splicing edges and proceed to fuse
these features. Additionally, we design a temporal feature
encoding module to effectively capture motion information in
videos.

In summary, the primary contributions of this paper include:
• Proposing a novel method for detecting video object

splicing forgery by effectively identifying distinct features
in lighting, texture, and quality information between two
different source videos.

• Enhancing robustness through multi-stage learning, ex-
hibiting high performance in the face of video editing and
processing techniques that significantly impact splicing
detection.

• Demonstrating the effectiveness of our method through
extensive experimental results on a dataset of video object
splicing, outperforming existing state-of-the-art methods.
This will contribute to advancing the detection of non-
homogeneous video object splicing forgery.

II. RELATED WORKS

The creation of video splicing involves the use of tools
similar to Photoshop to generate objects manually. Each object
to be added to the video requires careful consideration, taking
into account whether it fits semantically and is consistent
with the background. Precise determination of the splicing
location, as well as the scale and size of the spliced object
in the background, is essential. Factors like brightness, color
coordination between the foreground and background, and
various other elements need to be considered. Currently, deep
learning-based object splicing detection techniques have not
yet reached the expected level of performance, as research in
this field has mainly focused on images, lacking relevant video
datasets[8, 12–14].

PQMECNet [7] utilizes local estimation of JPEG quantiza-
tion matrices to distinguish spliced regions originating from
different sources. MVSS-Net [1] learns semantically indepen-
dent and more general features using noise distribution and
boundary artifacts around the tampered area. ComNet [15] cus-
tomizes the approximation of JPEG compression operations
to improve performance on JPEG-compressed images. DCU-
Net [12] effectively extracts tampered regions by leveraging
double-channel encoding of deep features, utilizing dilated
convolutions, and merging in the decoder. TransU2-Net [2]
is a novel transformer-based architecture designed to enhance
object-level forgery detection in images. The challenge in
splicing localization lies in enhancing the robustness of the
adopted methods against various post-processing operations,
such as compression and blurring [1].

III. METHOD

As shown in Figure 1, our approach consists of two key
stages: multi-view feature extraction and local feature and

Fig. 1. An overview of the multi-view inconsistency analysis network
designed for video splicing localization. We extract features from various
perspectives, including edge-bright, texture, and video quality, to analyze the
inconsistency between the spliced object video and the source video. Addition-
ally, we employ modules based on CNN and ViT to enable correlation learning
from local to global scales, facilitating the handling of these inconsistency
features.

global feature learning. Our method effectively addresses
the task of detecting video splicing forgery by employing
the joint use of multi-view feature extraction and local and
global feature learning, thereby enhancing the accuracy and
robustness of detection.

A. Edge and Brightness Feature Extraction

In object-level video splicing detection, extracting bright-
ness variation features plays an important role, as lighting
is one of the important factors affecting video authenticity.
The lighting conditions of different objects or scenes may be
different, and the forged object may have inconsistent shadows
and highlights under different lighting conditions. Therefore,
the extraction of brightness features can be used to detect
the lighting consistency between the forged object and the
background.

Firstly, the Sobel filter finds brightness variations in an
image by calculating the first-order discrete derivative of the
image grayscale function, especially in edge regions. This
helps to highlight parts of the image with brightness and
lighting variations. Subsequently, the Laplacian filter more ac-
curately locates brightness variations and edges by calculating
the second-order gradient of the image, while also enhancing
detailed information in the image, including texture and subtle
brightness variations. Specifically, the mathematical formulas
of the Sobel and Laplacian filters are as follows:

Sobelx(i, j) = −2f(i− 1, j − 1)

+ 0f(i, j − 1) + 2f(i+ 1, j − 1)

− 2f(i− 1, j) + 0f(i, j) + 2f(i+ 1, j)

− 2f(i− 1, j + 1) + 0f(i, j + 1)

+ 2f(i+ 1, j + 1)

(1)

Sobely(i, j) = −2f(i− 1, j − 1)− 2f(i, j − 1)

− 2f(i+ 1, j − 1) + 0f(i− 1, j)

+ 0f(i, j) + 0f(i+ 1, j)

+ 2f(i− 1, j + 1)

+ 2f(i, j + 1) + 2f(i+ 1, j + 1)

(2)
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Laplacian(f) =
∂2f

∂x2
+

∂2f

∂y2
(3)

Here, f(i, j) denotes the grayscale value of pixel (i, j) in
the image, while Sobelx(i, j) and Sobely(i, j) respectively
represent the responses of the Sobel filter in the horizontal and
vertical directions. Laplacian(f) corresponds to the Laplacian
response of the image f , and ∂2f

∂x2 and ∂2f
∂y2 signify the second-

order derivatives of the image in the horizontal and vertical
directions. In practical applications, it is common to apply
Sobel and Laplacian filters to each channel of the image
(e.g., RGB) and then combine their results to comprehensively
consider variations in brightness across different color chan-
nels. The utilization of these filters not only aids in detecting
splicing edges but also facilitates the extraction of brightness
features, particularly in addressing inconsistencies in lighting
when detecting the presence of forged objects against the
background.

B. Texture Feature Extraction Module

We employ CNN convolutional kernels to implement Gabor
filters for the extraction of texture features. Gabor filters
efficiently capture various texture information within images
through multi-scale and multi-directional analysis. They ex-
hibit excellent sensitivity to texture features of different fre-
quencies, orientations, and polarities, making them suitable
for a wide range of texture analysis tasks. The mathematical
expressions for Gabor filters are as follows:

G(x, y) = exp

(
−x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ϕ

)
(4)

G(x, y) = exp

(
−x′2 + γ2y′2

2σ2

)
sin

(
2π

x′

λ
+ ϕ

)
(5)

Here, x and y represent the spatial coordinates of the
image, x′ and y′ represent the coordinates after rotation and
scale transformation, σ controls the bandwidth of the filter, λ
determines the center frequency of the filter, γ is an attenuation
factor, and ϕ denotes the phase offset. After applying Gabor
filters, we obtain texture responses of the image at different
scales and orientations. These texture response images can be
used to construct a representation of texture features, which
is instrumental in detecting inconsistencies and disguises be-
tween forged objects and the background. The extraction of
texture features and the application of Gabor filters play a
crucial role in enhancing the performance of video object
splicing detection.

C. Inconsistency in Quality Features Extraction Module

Frequency domain information extraction plays a crucial
role in the analysis of video quality features. Discrete Cosine
Transform (DCT) is a commonly used frequency domain
transformation method employed to convert video signals
from the time domain to the frequency domain. Through
DCT, videos can be decomposed into different frequency
components, and the magnitude and phase information of these
components can be used to assess video quality. Specifically,
higher magnitudes often indicate stronger signals, while lower

magnitudes may suggest signal loss or noise interference. By
analyzing these magnitudes and phase information, we can
evaluate quality metrics such as video sharpness and distortion
degree, thus enhancing the accuracy and robustness of splice
forgery detection and ensuring the credibility and integrity
of video content. The mathematical expression of DCT is as
follows:

F (u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

S(x, y)

cos

(
(2x+ 1)uπ

2N

)
cos

(
(2y + 1)vπ

2N

) (6)

In this simplified formula, F (u, v) represents coefficients
in the frequency domain, S(x, y) represents pixel values in
the block, u and v are frequency domain coordinates, and
N is the block size. In our PyTorch-based frequency filter
model, we employ four different block sizes to handle image
information in different frequency ranges. These filters are
used to process: (1) low-frequency image features, typically
including the overall structure and larger features of the
image. (2) mid-frequency image features, encompassing im-
age features between low and high frequencies. (3) high-
frequency image features, capturing image details and texture
information. (4) the entire spectral range, covering low, mid,
and high frequencies, for frequency domain transformation of
the entire image. Finally, the outputs of these four filters are
concatenated to form the final output.

D. Multi-View Feature Joint Learning

Multi-view feature joint learning aims to generate pixel-
level predictions that closely resemble the ground truth of
forged regions. To achieve this goal, multi-view feature
joint learning combines various types of features, including
edge brightness features, texture features, and video quality
information features. During the feature fusion stage, we
leverage the strengths of both CNN and ViT models. By
using MaxPooling in conjunction with a CNN-based ResNet
module and InterlacedFormer, our objective is to extract both
local and global features. We employ MSE loss to efficiently
and accurately locate forged regions, thereby enhancing the
performance and reliability of video forgery detection.

We employ a joint learning approach with CNN and ViT,
capitalizing on their respective strengths. CNN models excel at
extracting local features, particularly in capturing details such
as edges and textures within images. Consequently, we design
a CNN-based ResNet specifically for extracting local features,
replacing the self-attention mechanism with MaxPooling and
CNN. This approach aids in better capturing local details of
forged regions, enhancing sensitivity to edges and textures, and
improving the ability to pinpoint forged regions. Meanwhile,
ViT is a powerful model for extracting global features and
excels in semantic understanding of the entire image. We use
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the InterlacedFormer module based on ViT to extract global
features, facilitating a better understanding of the overall con-
tent and background information of the image. By integrating
global features, the model gains a better understanding of the
relationship between forged objects and their surroundings,
thereby increasing the accuracy of forged region localization.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset: To evaluate the performance of object-level
video splicing detection, we conducted experiments using the
Video Splicing (VS) dataset[16]. The VS dataset is specifically
designed for video splicing detection and consists of a training
set with 795 forged videos and a test set with 30 carefully
crafted forged videos. Each forged video is paired with 30
genuine videos. This dataset provides diverse and challenging
examples, allowing us to comprehensively assess the robust-
ness and accuracy of our method in detecting object additions.

2) Evaluation Metrics: We employed multiple evaluation
metrics to measure the performance of our method, including
mean Intersection over Union (mIoU), Area Under the Curve
(AUC), F1 score, and pixel-level accuracy. These metrics
quantitatively assess the performance of the method in terms
of overlap with ground truth data, similarity to ground truth
data, accuracy, completeness, and pixel-level precision, among
other aspects. Higher values of mIoU, AUC, F1 score, and
pixel-level accuracy indicate superior performance. Given the
lack of open-source video splicing detection methods, we
compared our approach with the existing UVL-Net as well
as several leading video semantic segmentation methods, in-
cluding PoolFormer[9], MetaFormer[9], and HRFormer[11].
We retrained these baseline models on the VS dataset.

3) Implementation Details: We utilized a GPU with 24GB
of memory for model training. Each video was treated as
an input sequence containing 4 frames, and we employed a
batch size of 10 with a learning rate of 1e-4 for training.
To enhance the diversity of the training data, we employed
various common data augmentation techniques. During the
model training process, we selected the Mean Squared Error
(MSE) as the loss function and used the Adam optimizer
for optimization. The advantage of using MSE loss is that
it directly compares the pixel-level results generated by the
model with the ground truth, making the training process
more targeted. This helps the model gradually approach the
true distribution of forged regions, thereby improving the
performance and reliability of video splicing detection. This
training approach aids the model in better understanding and
capturing the features of forged regions, enabling it to detect
video forgery more accurately.

B. Experimental Results

C. Comparative Experiments

Table I presents comparative experiments between our
method and existing video splicing detection methods, as
well as methods based on semantic segmentation. Due to
the enhancement of multi-view inconsistency features in

Table I: Comparison Experiments on the VS Dataset with Baseline
Methods. Here, E, T, F represent the application of edge-brightness, texture,

and frequency domain features, while N represents no application of any
inconsistency trace extraction module.

Methods None
mIoU/F1

Compression
mIoU/F1

Detail
mIoU/F1

Gaussian
mIoU/F1

Blur
mIoU/F1

Median
mIoU/F1

Filp
mIoU/F1

PoolFormer 0.08/0.14 0.09/0.14 0.07/ 0.13 0.08/0.14 0.09/0.14 0.07/0.13 0.08/0.14
MetaFormer 0.10/0.14 0.08/0.14 0.08/0.12 0.10/0.14 0.08/0.14 0.08/0.12 0.10/0.14
HRFormer 0.40/0.48 0.31/0.38 0.36/0.45 0.28/0.37 0.27/0.35 0.38/0.46 0.46/0.55
UVL-Net 0.46/0.57 0.49/0.62 0.46/0.58 0.34/0.44 0.41/0.51 0.68/0.77 0.55/0.67
Ours+N 0.50/0.61 0.39/0.51 0.52/0.63 0.26/0.36 0.38/0.44 0.68/0.78 0.53/0.64
Ours+T 0.57/0.68 0.50/0.63 0.51/0.63 0.30/0.43 0.74/0.80 0.80/0.85 0.59/0.70
Ours+E 0.55/0.67 0.51/0.64 0.53/0.64 0.33/0.45 0.60/0.72 0.74/0.83 0.58/0.70
Ours+F 0.55/0.67 0.46/0.58 0.49/0.63 0.31/0.42 0.71/0.77 0.78/0.86 0.58/0.69

Ours+E+T+F 0.61/0.73 0.65/0.78 0.63/0.76 0.32/0.49 0.78/0.87 0.82/0.90 0.57/ 0.68

Fig. 2. Visualization results with baseline methods.

our approach, our method significantly outperforms semantic
segmentation-based methods like PoolFormer, MetaFormer,
and HRFormer. UVL-Net aims to propose a universal frame-
work for video tampering localization but focuses more on
detecting forged traces. In contrast, our method pays more at-
tention to the differences between two spliced genuine videos,
aiming to extract more generalized inconsistency features, thus
performing better in terms of performance.

D. Robustness Evaluation

Table I also displays the results of robustness evaluations
against common video processing techniques. Considering
that videos uploaded to the internet often undergo various
treatments like compression and enhancement, robustness
evaluation holds significant importance. We assessed the per-
formance under various video processing operations. Experi-
mental results demonstrate that our method exhibits robustness
across different processing scenarios, outperforming the base-
line methods significantly. However, for Gaussian blur and blur
operations, there is a more noticeable performance decline,
indicating that these noise reduction operations might reduce
the inconsistency features between the two spliced videos,
especially the impact of physical noise.

E. Visualization Results Analysis and Discussion

Figure 2 highlight the exceptional performance of our
approach in detecting video object-level splicing forgery. This
success can be attributed to the integration of multi-view
learning and the utilization of both local and global features.
Multi-view learning allows us to accurately capture subtle
differences in forged regions, particularly in fine-grained edge
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details. Simultaneously, the combination of local and global
feature information enables a more comprehensive understand-
ing of the nature of the forgery, enhancing precise localization
across the entire region. These factors collectively contribute
to higher accuracy and robustness in video forgery detection,
ultimately safeguarding the authenticity and integrity of mul-
timedia content.

V. CONCLUSION

In this study, we have proposed a novel approach for
detecting object-level video splicing forgery. Through the joint
learning of multi-view features, we have leveraged a variety
of feature types, including edge brightness, texture, and video
quality, as well as the strengths of CNN and ViT models.
This approach effectively addresses the challenges of video
splicing forgery detection, enhancing accuracy and robustness
in detection. Our experimental results demonstrate significant
performance advantages on datasets related to video object
splicing forgery, providing strong support for preserving the
authenticity and integrity of multimedia content. In the future,
we will continue to refine our method to adapt to evolving
video forgery techniques, ensuring the trustworthiness and
reliability of video content.
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