
International Journal of Emerging Technologies and Advanced Applications

Real-time Fault Detection and Stability
Enhancement Mechanism Based on Large Models

Chuanyong Zhao1, Yuan Xi2
1 Beijing Didichuxing Technology Development Co., Ltd., Beijing, China

2 Beijing Dongchezhu Technology Co., Ltd., Beijing, China
xiyuan@vip.163.com

Abstract—This paper proposes a framework for real-time
fault detection using large models, which rapidly identifies
potential faults through system log and operational data analy-
sis, triggering stability enhancement mechanisms. The research
designs a self-supervised learning algorithm that enables large
models to continuously improve detection accuracy in dynamic
environments. The method adopts a transformer architecture
and attention mechanism to capture temporal dependencies
and complex patterns in system behavior. Through comparison
with traditional methods, we validate the advantages of the
proposed method in terms of accuracy and real-time perfor-
mance. Experiments conducted across various fault scenarios
demonstrate that the method significantly reduces fault response
time in high-concurrency systems, decreasing average detection
latency by 47.3% and shortening system recovery time by
35.8%, thereby improving overall stability. Additionally, the self-
supervised nature of the method enables continuous adaptation to
new fault patterns, providing an innovative solution for reliability
assurance in distributed systems.

Index Terms—Large models, Fault detection, Real-time moni-
toring, Stability enhancement, Self-supervised Learning

I. INTRODUCTION

A. Research Background

With the widespread application of distributed systems
and cloud computing, the complexity of systems in high-
concurrency environments has grown exponentially, presenting
unprecedented challenges for system fault detection and han-
dling. Currently, large-scale distributed systems typically com-
prise hundreds or thousands of microservices with complex
interdependencies, where the failure of any single component
can trigger a chain reaction leading to system performance
degradation or even complete collapse. Statistics show that
approximately 68% of service interruption incidents in large
internet companies stem from difficult-to-predict complex fault
cascade phenomena [1]. This complexity makes traditional
fault detection methods based on thresholds or simple rules
difficult to adapt, as they cannot capture deep interaction pat-
terns and temporal dependencies between system components.
Traditional methods also often rely on manually defined rules,
which perform poorly when faced with emerging fault types,

resulting in high false positive and false negative rates that
seriously affect system reliability and user experience [2].
Furthermore, as business scale expands, the cost of manually
defining and maintaining these rules grows exponentially, pos-
ing severe challenges to the scalability of traditional methods.
In this context, large model technology, with its powerful pat-
tern recognition capabilities and adaptability, shows potential
for solving complex system fault detection problems. Large
models based on transformer architectures can process and
understand long sequence data, capturing complex dependen-
cies in time and space, which is perfectly suited for processing
multi-dimensional monitoring data in distributed systems [3].
The breakthrough progress of large models in fields such as
natural language processing and computer vision in recent
years provides reference for their application in system re-
liability. In particular, the self-supervised learning capability
of large models enables them to learn from massive unlabeled
data, which is especially important for fault detection where
labeled fault data is typically scarce in real environments [4].

B. Research Significance

In today’s highly digitally dependent era, system stabil-
ity has become a key factor affecting user experience and
corporate reputation. Research shows that service interrup-
tions in enterprise applications can cause economic losses
averaging hundreds of thousands to millions of dollars per
hour, not including the long-term impact of lost user trust
[5]. Therefore, innovation in real-time fault detection and
stability enhancement technology has significant practical im-
portance. The main innovation of this research lies in the deep
integration of large model technology with fault detection,
designing an end-to-end real-time monitoring and self-healing
framework. Unlike traditional methods, our proposed approach
can automatically learn normal patterns from system histor-
ical behavior without requiring numerous manually labeled
fault samples, greatly reducing deployment costs. Meanwhile,
through the self-supervised learning mechanism, the method
can continuously adapt to system evolution and new fault pat-

Copyright: © 2025 The Author(s); CC BY-NC 4.0.
Exclusive licensee IJETAA.

ISSN:3006-2985(Print)
ISSN:3006-9297(Online)

https://www.ijetaa.com/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

terns, solving the problem of difficult maintenance and updates
that traditional methods face. In terms of application value, the
framework proposed in this research is not only applicable to
infrastructure monitoring for cloud service providers but can
also be extended to critical fields with high system reliability
requirements such as finance, healthcare, and manufacturing.
The method significantly improves system availability and
reliability by reducing manual intervention and achieving
early fault detection and automatic mitigation. Additionally,
the stability enhancement mechanism in the framework can
automatically trigger corresponding repair strategies based on
the detected fault type, forming closed-loop control, which has
important value for autonomous operation and maintenance of
large-scale distributed systems. With the acceleration of enter-
prise digital transformation and the popularization of cloud-
native architecture, the solution proposed in this research will
help build more resilient computing infrastructure, providing
strong support for continuous business operations.

II. RELATED WORK

A. Overview of Fault Detection Technologies

Fault detection technology has evolved from simple rules
to complex intelligent algorithms. Rule-based methods were
the earliest applied fault detection technology, judging system
states through preset thresholds and logical rules. Zhao et al.
[6] proposed a rule-based network traffic anomaly detection
framework that identifies DDoS attacks by defining traffic
pattern rules. Although simple and intuitive to implement,
these methods are highly sensitive to threshold settings and
difficult to handle complex fault scenarios. With the devel-
opment of data-driven methods, traditional machine learning
techniques began to emerge in the fault detection field. Liu
et al. [7] used support vector machines (SVM) to analyze
server performance metrics, achieving prediction of resource
exhaustion faults. Chen and Wang [8] combined decision
tree and random forest algorithms to construct a multi-level
fault detection model, achieving certain success in identifying
complex fault patterns. However, these methods typically rely
on carefully designed feature engineering and perform poorly
when processing high-dimensional unstructured data. In recent
years, deep learning methods have been widely applied in the
fault detection field due to their powerful feature extraction
capabilities. Zhang et al. [9] proposed a method based on
Long Short-Term Memory networks (LSTM) that can capture
temporal dependencies in system metrics, effectively improv-
ing the detection accuracy of performance anomalies. Li et al.
[10] designed a hybrid model combining Convolutional Neural
Networks (CNN) and autoencoders, learning normal patterns
from large-scale monitoring data through unsupervised learn-
ing and marking behaviors that deviate from these patterns
as potential faults. Although deep learning methods perform
excellently in processing complex data, they often require
large amounts of labeled data, and model interpretability is
insufficient, which limits their application in critical systems.
Furthermore, existing deep learning methods mostly focus on
single types of data or fault patterns, lacking the ability to

integrate multi-source heterogeneous data, making it difficult
to build comprehensive system health state cognition.

B. Progress in Large Model Technology

The rapid development of large model technology has
brought new possibilities to the fault detection field. The
introduction of the Transformer architecture is a major break-
through in the deep learning field in recent years, with its self-
attention mechanism able to capture long-distance dependen-
cies in sequence data. Wang et al. [11] explored the application
of Transformers in time series analysis, demonstrating their
advantages in processing long sequences and capturing com-
plex patterns. In the system monitoring field, Transformers can
simultaneously attend to system state indicators at different
time points, identifying complex fault precursors that are
difficult to discover with traditional methods. Large models
typically adopt a self-supervised learning paradigm, which is
particularly important for fault detection because labeled fault
samples are typically scarce in actual systems. Self-supervised
learning allows models to learn useful representations from
large amounts of unlabeled data, providing a foundation for
downstream tasks. Tian et al. [12] proposed a pre-training
strategy based on masked autoencoders, enabling models to
learn normal behavior patterns from massive system logs
without manual annotation. This approach not only reduces de-
pendence on expert knowledge but can also adapt to dynamic
changes in the system. With the improvement of computational
capabilities, the scale of large models continues to expand.
Brown et al. [13] demonstrated that the growth in model scale
brings qualitative changes in performance, enabling models to
generalize to unseen tasks. In the system monitoring field, this
generalization ability means that models can identify new fault
patterns, even if these patterns do not exist in the training data.
However, the deployment of large models also faces real-time
challenges. Zhang et al. [14] discussed model compression
and quantization techniques, proposing a method to balance
accuracy and inference speed, enabling large models to meet
real-time monitoring requirements. Additionally, Ren et al.
[15] studied incremental learning strategies, allowing models
to adapt to new data distributions without retraining, which is
crucial for dynamically changing system environments.

C. Current Status of Stability Enhancement Research

Stability enhancement technology is key to ensuring systems
maintain acceptable performance levels when faults occur.
Existing stability optimization strategies mainly include load
balancing, resource isolation, redundant design, and automatic
scaling. Wu et al. [16] proposed an adaptive load balancing
algorithm that reduces the pressure on overloaded nodes by
adjusting request distribution strategies in real-time, effectively
preventing cascade failures. The study shows that intelligent
load balancing can increase system throughput by more than
20% under high load conditions. Resource isolation tech-
nology prevents ”greedy” components from affecting overall
system stability by limiting the resources a single component
can consume. Zhou and Li [17] designed a container-based

https://www.ijetaa.com/article/view/132/ 2.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

multi-level resource isolation mechanism that effectively pre-
vents resource contention issues in microservice architectures.
Redundant design is a traditional method to improve system
reliability, but how to balance cost and reliability remains
a research hotspot. Chen et al. [18] proposed a dynamic
redundancy strategy that adjusts redundancy levels based
on service importance and current load, reducing resource
consumption by 30% compared to traditional static redun-
dancy methods while maintaining similar reliability levels.
Automatic scaling technology allows systems to automatically
adjust resource configurations based on load changes. Wang
et al. [19] developed a proactive scaling system combining
predictive models that triggers resource adjustments in ad-
vance by predicting future load trends, reducing performance
degradation caused by scaling delays. Although these methods
each have advantages, they generally have limitations such
as response lag, fixed policies, and lack of fault awareness.
Traditional stability strategies are typically reactive, triggering
response mechanisms only after faults have already affected
system performance, making it difficult to achieve true fault
prevention. Moreover, existing methods often focus on single-
dimensional stability optimization, lacking global cognition
and coordinated control capabilities for overall system health
status. Research shows that tightly combining fault detection
with stability enhancement to build closed-loop control sys-
tems is a key direction for improving system resilience, but
related work is still in the preliminary stage.

III. METHODOLOGY

A. Overall Framework

The real-time fault detection and stability enhancement
framework based on large models proposed in this research
aims to build an end-to-end system health monitoring and
self-healing closed loop. The framework consists of four
core modules: data collection and preprocessing, large model
analysis engine, fault detection decision-making, and stability
enhancement executor. Figure 1 shows the overall system
architecture and information flow between modules. The data
collection layer is responsible for collecting multi-dimensional
monitoring data from various nodes of the distributed system,
including system logs, performance metrics, and network
traffic. These raw data are preprocessed and then fed into
the large model analysis engine. The large model analysis
engine is the core of the framework, adopting a Transformer-
based architecture and learning normal behavior patterns of
the system through self-supervised pre-training. In the real-
time monitoring phase, the engine analyzes incoming data
streams, calculates the deviation of the current system state
from normal patterns, and outputs anomaly probability scores
and potential fault types. The fault detection decision-making
module determines whether to trigger alerts and stability
enhancement measures based on the output of the analysis
engine, combined with preset threshold policies. This module
also contains a feedback learning component that can continu-
ously optimize detection strategies based on confirmation from
operations personnel and subsequent system performance. The

Fig. 1. Architecture diagram of real-time fault detection and stability
enhancement framework based on large models

stability enhancement executor receives detection decisions
and selects and executes appropriate stability enhancement
strategies based on the predicted fault type, such as resource
reallocation, service degradation, or request rerouting. This
module also monitors the effects of policy execution and feeds
the results back to the detection module, forming closed-loop
control. The entire framework design follows the principle of
low coupling and high cohesion, with modules communicating
through standard interfaces, facilitating independent upgrades
and extensions. In addition, the framework includes a metadata
management system that records historical fault cases and han-
dling experiences, providing a knowledge base for continuous
learning of the large model.

B. Data Collection and Preprocessing

High-quality data is the foundation of effective fault de-
tection. This research has designed a multi-level, multi-
dimensional data collection strategy for the complexity of
distributed systems, ensuring comprehensive capture of system
state information. Data types mainly include three categories:
system logs, performance metrics, and fault records. Sys-
tem logs contain structured and unstructured text information
generated by applications and system components, recording
events, errors, and warnings during system operation. These
log data are typically scattered across different nodes and need
to be centrally collected and uniformly processed. Performance
metrics include numerical indicators such as CPU usage, mem-
ory consumption, network throughput, disk I/O, and request
latency, which usually exist in time series form, reflecting sys-
tem resource usage and service quality. Fault records contain
descriptions of historical fault events, occurrence times, impact
scope, and solutions, providing valuable learning samples
for the model [20]. Data preprocessing is a key step in
transforming raw data into a form usable by the model. For log
data, we adopted a process including log parsing, tokenization,
and feature extraction. First, unstructured logs are converted
into structured formats using regular expressions and template
matching techniques, extracting key fields such as timestamps,
log levels, component names, and message content. Then, text

https://www.ijetaa.com/article/view/132/ 3.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

information is converted into numerical vectors through TF-
IDF and word embedding techniques to capture semantic infor-
mation. For performance metrics, preprocessing steps include
handling missing values, detecting outliers, normalization, and
time window feature extraction. We adopted a sliding window
technique to construct a set of statistical features for each
time point, including mean, variance, trend, and frequency
domain features, to capture the multi-scale characteristics of
time series. Additionally, to address the fusion problem of
multi-source heterogeneous data, we designed a feature fusion
strategy based on time alignment, aligning data from different
sources by timestamp and constructing unified feature vectors
[21]. The preprocessing process also contains data quality
assurance mechanisms, detecting and processing outliers and
inconsistent data through data validation rules to ensure the
quality of data input to the model. These preprocessing steps
significantly improved the training efficiency and prediction
accuracy of the model, laying a solid foundation for subse-
quent fault detection.

C. Large Model Design

In the large model design phase, we developed a customized
large model based on the Transformer architecture for the
special requirements of fault detection. The model can not
only process multi-modal input data but also has the ability to
model temporal dependencies and identify anomalous patterns.
In terms of model selection, we adopted a Transformer struc-
ture with multi-head self-attention mechanisms, which can
process long sequence data in parallel and capture dependen-
cies at different time scales. Compared to traditional RNNs,
Transformers avoid the gradient vanishing problem in long-
distance information transmission, making them more suitable
for capturing long-term dependencies in system behavior.
The model includes an encoder-decoder structure, where the
encoder is responsible for extracting contextual representations
of the input sequence, and the decoder generates anomaly
probabilities and fault type predictions. To adapt to fault de-
tection scenarios, we introduced multi-level attention pooling
mechanisms on top of the standard Transformer, enhancing
the model’s sensitivity to key anomalous indicators [22]. Self-
supervised pre-training is an important innovation in model
design. Considering the scarcity of labeled fault samples, we
designed three self-supervised learning tasks: metric value
prediction, anomaly mask identification, and temporal con-
trastive learning. The metric value prediction task requires
the model to predict system metrics at future time points
based on historical observations, prompting the model to
learn normal evolution patterns of the system. The anomaly
mask identification task randomly masks certain values in the
input sequence and requires the model to identify whether
these masked values conform to normal patterns. Temporal
contrastive learning distinguishes between normal samples and
anomalous samples from different time points of the same
system, learning implicit system state representations. These
three tasks together form a multi-objective pre-training frame-
work, enabling the model to learn normal behavior patterns

of the system from large amounts of unlabeled data [23].
To meet real-time monitoring requirements, we performed a
series of optimizations on the model to improve its inference
efficiency. First, through knowledge distillation technology, we
transferred knowledge from a large pre-trained model to a
structurally simplified student model. Then, adopting model
quantization and sparsification techniques, we converted model
parameters from 32-bit floating-point numbers to 8-bit integers
and removed unimportant connections, significantly reducing
computational complexity while maintaining accuracy. Addi-
tionally, we implemented incremental inference technology,
using a sliding window mechanism to progressively update
model states, avoiding recalculating the entire sequence for
each inference, further improving real-time performance [24].

D. Fault Detection Module

The fault detection module is responsible for transforming
the output of the large model into actionable decision infor-
mation and is a key link in the entire framework. This module
accomplishes two main tasks: anomaly probability calculation
and fault type prediction. In terms of anomaly probability cal-
culation, we designed a multi-scale anomaly score calculation
method that comprehensively considers numerical deviation,
pattern changes, and environmental factors. Specifically, for
each time point’s system state, the large model calculates its
deviation from normal distribution, while considering trend,
periodicity, and sudden change features of the time series. This
method not only considers anomalies in single metrics but can
also capture anomalous association patterns between multiple
metrics. The calculation of anomaly scores integrates statistical
methods and deep learning techniques, both preserving the
interpretability of statistical methods and utilizing the powerful
expressive capabilities of deep learning [25]. Threshold setting
is a key link in anomaly detection; too high a threshold leads to
missed detections, while too low leads to false alarms. To solve
this problem, we proposed an adaptive threshold mechanism
that dynamically adjusts thresholds based on historical data
and current system load. This mechanism introduces context-
aware capabilities in both time and space dimensions, able to
automatically adjust sensitivity based on different times of day,
differences between weekdays and weekends, and system load
changes. Additionally, we implemented a multi-level threshold
strategy, classifying anomalies into ”warning,” ”severe,” and
”urgent” levels, corresponding to different response strategies,
improving system adaptability [26]. In terms of fault type
prediction, we adopted a hierarchical classification strategy,
first determining the general category of the fault (such as
resource exhaustion, service anomaly, or network fault), then
further subdividing specific types. Model output includes
probability distributions and confidence scores for fault types,
providing decision basis for subsequent stability enhancement.
To improve prediction accuracy, we designed a memory-
enhanced mechanism that records historical fault patterns and
system state transition rules to assist current decisions. This
module also contains an interpretability component that pro-
vides visual explanations of fault judgments through attention

https://www.ijetaa.com/article/view/132/ 4.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

weight analysis and feature importance assessment, helping
operations personnel understand and verify model decisions
[27].

E. Stability Enhancement Mechanism

The stability enhancement mechanism is the execution
phase of this framework, responsible for taking appropriate
measures based on fault detection results to maintain stable
system operation. We designed a hierarchical stability en-
hancement strategy including resource management, service
orchestration, and traffic control at three levels. At the re-
source management level, we implemented dynamic resource
adjustment strategies that can automatically adjust resource
allocation based on detected potential resource exhaustion
risks. For example, when abnormal growth in memory usage
is detected on a node, the system will pre-allocate additional
memory resources or trigger garbage collection to prevent
service crashes due to memory overflow. We also designed
resource isolation mechanisms to strictly limit resource usage
of different services through container technology, prevent-
ing abnormalities in single services from affecting overall
system stability [28]. Strategies at the service orchestration
level include automatic restart, replica scaling, and service
degradation. The automatic restart strategy can identify service
instances in a ”zombie” state and perform precise restarts to
restore their normal functionality. The replica scaling strategy
dynamically adjusts the number of service instances based
on service health status and load prediction to ensure the
system has sufficient capacity to handle requests. The service
degradation strategy selectively reduces the service quality of
non-critical functions when the system faces overload risks,
ensuring normal operation of core businesses [29]. Traffic con-
trol is an important means of stability enhancement, including
intelligent load balancing, request rate limiting, and circuit
breaking degradation. The intelligent load balancing strategy
dynamically adjusts traffic distribution weights based on health
scores of service instances, directing requests to nodes in
good health. The request rate limiting mechanism implements
restrictions on suspicious sources when abnormal traffic pat-
terns are detected, preventing system crashes caused by traffic
surges. The circuit breaking mechanism monitors response
times and error rates of service dependencies, promptly cutting
off call paths when dependent services are unstable, preventing
fault cascade propagation [30]. To achieve coordinated execu-
tion of the above strategies, we designed a decision system
based on a rule engine that maps detection results to specific
actions. This system adopts multi-level decision logic, includ-
ing immediate response, progressive escalation, and global
coordination, balancing response speed and system stability.
Simultaneously, we implemented a feedback mechanism for
policy execution, continuously evaluating the effectiveness of
stability measures and adjusting subsequent decisions based
on feedback, forming closed-loop control.

IV. EXPERIMENTAL DESIGN

A. Experimental Environment

To comprehensively evaluate the performance of the pro-
posed method, we built a distributed system test platform sim-
ulating real production environments. This platform is based
on the Kubernetes container orchestration system, including
multiple microservice clusters, capable of simulating diverse
system loads and fault scenarios. The hardware environment
includes 8 physical servers, each equipped with an Intel Xeon
E5-2680 v4 processor (14 cores, 28 threads), 128GB memory,
and 10Gbps network connections. The servers form a hetero-
geneous cluster running different types of workloads, includ-
ing compute-intensive, memory-intensive, and I/O-intensive
workloads. In terms of software environment, we used Ku-
bernetes v1.23 as the container orchestration platform, Docker
20.10 as the container runtime, and deployed Istio 1.12 service
mesh for traffic management and service communication. The
application layer contains 20 microservice components form-
ing a typical e-commerce application, covering functions such
as user authentication, product catalog, shopping cart, order
processing, and payment. These services are implemented
using different programming languages and frameworks, in-
cluding Java Spring Boot, Python Flask, and Node.js Express,
reflecting the diversity of real environments [31]. The monitor-
ing system uses a combination of Prometheus and Grafana to
collect and visualize system metrics. Log collection uses the
ELK stack (Elasticsearch, Logstash, Kibana) to centrally store
and analyze logs generated by various services. The tracing
system uses Jaeger to record performance and dependencies of
cross-service calls. We also configured the Chaos Monkey fault
injection tool to simulate various fault scenarios. To ensure
the repeatability and fairness of experiments, we developed
an automated testing framework capable of executing load
generation, fault injection, and performance measurement ac-
cording to preset plans, and recording detailed experimental
data. This framework also supports automated execution of
comparative experiments, facilitating fair comparison with
baseline methods. The design of the experimental environment
fully considers scalability and realism, capable of simulating
system configurations from small to large scale, providing
a reliable platform for evaluating method performance in
different scenarios [32].

B. Dataset and Fault Injection

This research used two types of data: historical data col-
lected from real production environments and synthetic data
generated through fault injection. Real data comes from
two years of operational records from a large e-commerce
platform, containing over 5TB of log data and performance
metrics, as well as 250 labeled fault cases. These data have
been anonymized, preserving system behavior characteristics
while ensuring data security. The time span of the data covers
multiple major promotion activities and system upgrades, con-
taining system performance under different workloads, provid-
ing rich learning materials for the model [33]. To enhance data

https://www.ijetaa.com/article/view/132/ 5.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

diversity and cover more fault types, we designed a systematic
fault injection scheme. This scheme is based on fault tree
analysis methods, systematically covering four common fault
categories: resource exhaustion, service anomalies, network
issues, and configuration errors. Specifically, resource exhaus-
tion faults include CPU saturation, memory leaks, disk space
exhaustion, and connection pool depletion; service anomalies
include slow response, service unresponsiveness, and error
responses; network issues include increased network latency,
packet loss, partitioning, and connection interruption; config-
uration errors include incorrect service parameters, version in-
compatibility, and permission setting errors. Multiple injection
intensities and durations were designed for each fault type to
test system performance under faults of different severity [34].

The fault injection process adopted two approaches:
infrastructure-level injection and application-level injection.
Infrastructure-level injection simulates underlying resource
and network faults by controlling container resource limits,
network policies, and node states. For example, using Linux’s
stress-ng tool to create CPU pressure, using tc commands to
simulate network latency and packet loss, and using memory
occupation programs to simulate memory leaks. Application-
level injection simulates service-level faults by modifying
application behavior or configuration. We developed a set
of service performance degradation plugins that can change
service response time, error rate, and resource consumption
characteristics according to preset patterns [35]. To ensure
the authenticity of injected faults, we analyzed historical fault
data, extracted typical fault evolution patterns and charac-
teristics, and reproduced these patterns during the injection
process. For example, when simulating memory leaks, rather
than simply occupying large amounts of memory in a short
time, we gradually increased memory consumption according
to the characteristics of real memory leaks, more accurately
reflecting actual fault scenarios. Through this method, we
built a comprehensive dataset containing 500 fault scenarios,
covering various fault types, severity levels, and system load
conditions, providing comprehensive data support for model
training and evaluation.

C. Evaluation Metrics

To comprehensively evaluate the performance of the pro-
posed method, we designed a multi-dimensional evaluation
metric system covering two major aspects: fault detection
effectiveness and stability enhancement effectiveness. For
fault detection, we adopted standard classification evaluation
metrics and time efficiency metrics. Classification evaluation
metrics include Precision, Recall, F1 score, and Area Under
Curve (AUC). Precision measures the proportion of true faults
in the detection results, Recall measures the proportion of
successfully detected faults, and the F1 score is the harmonic
mean of Precision and Recall, providing a balanced compre-
hensive metric. AUC evaluates the overall performance of
the model under different threshold settings, reflecting the
model’s ability to distinguish between normal and anomalous
states [36]. Time efficiency metrics mainly include Detection

Latency and Warning Time. Detection Latency measures the
time interval from fault occurrence to being identified by
the detection system, a key metric for evaluating real-time
performance. Warning Time measures how long before a fault
fully manifests the system can detect potential risks, reflecting
the early warning capability of the method. These two metrics
are crucial for evaluating the value of the method in practical
applications, as timely fault detection can provide valuable
time windows for response measures [37].

For stability enhancement, we focus on the overall per-
formance and recovery capability of the system under fault
conditions. Key metrics include Downtime Reduction Percent-
age, Recovery Time, and Throughput Stability. Downtime Re-
duction Percentage compares the difference in system down-
time with and without using the proposed method, directly
reflecting the effect of stability enhancement. Recovery Time
measures the time interval from fault detection to system re-
covery to normal operation, reflecting the execution efficiency
of stability enhancement strategies. Throughput Stability eval-
uates the stability of the system’s service capacity under fault
conditions by calculating the Coefficient of Variation of system
throughput during faults [38]. In addition to these main met-
rics, we also designed some auxiliary metrics to evaluate other
aspects of the method. Resource Efficiency metrics measure
the computational and storage resource consumption during
fault detection and stability enhancement. Adaptability metrics
evaluate the performance of the method under system con-
figuration changes and new fault patterns. Scalability metrics
measure performance changes of the method with system scale
growth. These multi-dimensional evaluation metrics together
form a comprehensive performance evaluation framework,
capable of revealing the advantages and limitations of the
proposed method from different perspectives.

D. Comparison Methods

To comprehensively evaluate the advantages of the proposed
method, we selected four representative types of compari-
son methods, covering different approaches from traditional
techniques to advanced deep learning methods. The first type
is traditional rule detection methods, based on thresholds
and rules set by expert knowledge. We implemented a log
analysis system based on Elasticsearch, configured with a
set of rules for key error patterns, and used Prometheus’s
AlertManager to set up threshold-based performance metric
monitoring rules. These methods are simple to implement
and computationally efficient, but have limited flexibility and
difficulty dealing with new fault patterns [39]. The second type
is simple machine learning models, including methods based
on statistics and classical machine learning. We implemented
an anomaly detection algorithm based on Principal Component
Analysis (PCA), using historical data to build low-dimensional
representations of normal behavior and identifying anomalies
through reconstruction errors. Additionally, we implemented
Random Forest and Support Vector Machine (SVM) models
for fault classification. These methods have better general-
ization capabilities compared to rule-based methods, but rely

https://www.ijetaa.com/article/view/132/ 6.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT FAULT DETECTION METHODS

Method Precision(%) Recall(%) F1 Score(%) AUC(%) Avg Detection Latency(s)
Rule-based 87.2 76.5 81.5 82.3 143.6
ML (RF+SVM) 90.3 85.1 87.6 89.8 98.2
DL (LSTM+CNN) 92.6 90.5 91.5 93.7 62.4
Basic Transformer 94.1 93.2 93.6 95.8 47.9
Our Method 96.8 95.7 96.2 97.6 25.3

heavily on feature engineering and have difficulty capturing
complex temporal dependencies [40].

The third type is unoptimized deep learning models, in-
cluding Long Short-Term Memory (LSTM) and Convolutional
Neural Network (CNN) models. LSTM models are specifi-
cally designed to capture long-distance dependencies in time
series, and we implemented a bidirectional LSTM structure
for sequence anomaly detection. CNN models extract local
pattern features in time series through convolution operations.
These methods can automatically learn feature representations
but have high computational complexity and poor real-time
performance [41]. The fourth type is classical large model
methods, i.e., standard Transformer models without specific
optimization. We implemented a basic Transformer encoder
structure, using the same self-supervised pre-training tasks as
our proposed method, but without applying real-time optimiza-
tion and domain-specific adjustments. This comparison aims
to evaluate the effectiveness of our proposed optimization and
customization strategies [42]. To ensure fair comparison, all
methods used the same training and testing data and were
evaluated in the same hardware environment. We performed
parameter tuning for each method to ensure it achieved optimal
performance. Additionally, we designed a series of test sce-
narios targeting different fault types and system states to com-
prehensively evaluate the performance of each method under
different conditions. Through these comparative experiments,
we can clearly demonstrate the advantages and innovation
points of the proposed method relative to existing technologies.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Fault Detection Performance

This section analyzes in detail the performance of the pro-
posed method in fault detection. Table I shows a comparison
of the main performance metrics of different methods on the
test dataset, including precision, recall, F1 score, AUC, and
average detection latency.

From Table 1, it can be seen that our proposed method
outperforms comparison methods on all evaluation metrics.
Compared to rule-based methods, our method improves preci-
sion by 9.6 percentage points, recall by 19.2 percentage points,
and F1 score by 14.7 percentage points. More importantly,
our method significantly reduces average detection latency
from 143.6 seconds to 25.3 seconds, improving detection
real-time performance. Compared to the basic Transformer
model, our method improves precision by 2.7 percentage
points and shortens detection latency by 22.6 seconds, proving
the effectiveness of our proposed optimization strategies [43].

TABLE II
F1 SCORES FOR DIFFERENT FAULT TYPES

Fault Type F1 Score(%)
Resource Exhaustion 97.8
Service Anomaly 96.5
Network Issues 94.3
Configuration Errors 93.1

To further analyze the performance of the method on
different fault types, we subdivided the test results by fault
type, as shown in Table II. The results show that our method
achieves good detection results on all fault types, with par-
ticularly outstanding performance on resource exhaustion and
service anomaly faults, with F1 scores reaching 97.8% and
96.5% respectively. In comparison, the performance of all
methods decreases for network issues and configuration errors,
reflecting the complexity and diversity of these two fault types.
Notably, our method’s advantage is more pronounced for these
complex fault types, with gaps of 4.6 and 5.8 percentage
points compared to the second-best method, demonstrating the
superiority of large models in handling complex patterns [44].

In terms of detection latency, we conducted statistical anal-
ysis on the detection time of 500 test fault samples. The results
show that our method can detect 79.2% of faults within 30 sec-
onds after fault occurrence, while this proportion for the basic
Transformer model and deep learning model is 62.5% and
48.3% respectively. This significant improvement is attributed
to our proposed real-time inference optimization and multi-
scale anomaly scoring mechanism, enabling the model to more
quickly identify fault precursors [45]. Additionally, we also
evaluated the early warning capability of the method, i.e., the
ability to detect potential risks before the system completely
fails. Experimental results show that our method can issue
warnings on average 68.7 seconds before significant system
performance degradation, providing valuable response time for
system operations personnel, while rule-based methods have
almost no early warning capability and can only detect faults
after they have fully manifested.

B. Stability Enhancement Effect

This section evaluates the performance of the proposed
method in stability enhancement. Table III shows the down-
time reduction percentage of different methods when facing
four types of faults, measuring the proportion of system
downtime reduced relative to situations without intervention.

From Table 3, it can be seen that our method achieves
significant downtime reduction across all fault types, espe-
cially for resource exhaustion faults, reducing downtime by
78.5%. This is mainly due to our designed dynamic resource

https://www.ijetaa.com/article/view/132/ 7.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

TABLE III
DOWNTIME REDUCTION PERCENTAGE FOR DIFFERENT FAULT TYPES

Fault Type Downtime Reduction Percentage(%)
Resource Exhaustion 78.5
Service Anomaly 69.3
Network Issues 58.7
Configuration Errors 52.1

adjustment strategy, which can allocate additional resources
or trigger resource reclamation mechanisms based on de-
tected resource usage anomalies. For service anomaly faults,
our method reduces downtime by 69.3%, primarily through
service automatic restart and instance expansion strategies.
For network issues and configuration errors, the downtime
reduction percentages are relatively lower at 58.7% and 52.1%
respectively, reflecting the complexity and difficulty of solving
these two types of faults [38]. Compared to the comparative
methods, our method exceeds the closest comparative method
by 14.8 percentage points in average downtime reduction
percentage, demonstrating the superiority of large model-based
fault prediction and intelligent scheduling strategies.

In terms of system throughput stability, we recorded the
number of requests processed per minute during faults, calcu-
lating the coefficient of variation (CV) to evaluate stability.
Table IV shows the throughput coefficient of variation for
different methods when facing various types of faults, with
lower values indicating greater system stability.

The results show that our method achieves the lowest
throughput coefficient of variation across all fault types, with
an average value of 0.21, reducing by 47.5% compared to
the no-intervention situation and by 16% compared to the
second-best method. This indicates that our method can more
effectively maintain system service quality stability under fault
conditions [46]. Notably, our method performs particularly
well for resource exhaustion faults, with a coefficient of
variation of just 0.17, once again proving the effectiveness
of our designed dynamic resource adjustment strategy.

Recovery time is another important indicator for evaluating
stability enhancement effects. Our experimental results show
that with our research method, the average time for the
system to recover normal operation from fault detection is 42.6
seconds, while the recovery times using deep learning methods
and rule-based methods are 73.8 seconds and 112.5 seconds
respectively. This significant improvement is mainly due to our
designed intelligent stability enhancement strategies, which
can automatically select the most appropriate repair measures
based on fault type and evaluate execution effects in real-time
[47].

C. Model Robustness and Generalization Capability

The robustness and generalization capability of a model
are key determinants of its practical application value. To
evaluate these characteristics, we designed two additional
sets of experiments: data distribution change experiments and
unseen fault type experiments. In the data distribution change
experiments, we simulated significant changes in system load
and behavior patterns, such as traffic surges, new service

launches, and configuration changes. Table V shows the F1
score changes of different methods under these changes.

The results show that all methods experience performance
degradation to varying degrees under data distribution changes,
but our method demonstrates the strongest robustness, with an
average performance decay of only 3.4%, significantly lower
than other methods. This is mainly due to our designed self-
supervised learning mechanisms and multi-task pre-training
framework, enabling the model to learn more general sys-
tem behavior representations [48]. In the unseen fault type
experiments, we evaluated the methods’ detection capability
for new fault patterns not appearing in the training data. We
designed 10 new fault scenarios, including complex cascade
faults and mixed fault patterns. Experimental results show
that our method achieves an average F1 score of 87.3% on
these new fault types, while deep learning methods and rule-
based methods achieve 75.6% and 61.8% respectively. This
result demonstrates that our method has strong generalization
capability and can identify fault patterns not appearing in the
training data [49].

Self-supervised learning plays a key role in model robust-
ness and generalization capability. To quantify its contribu-
tion, we conducted ablation experiments comparing model
performance with and without self-supervised pre-training.
The results show that self-supervised pre-training improves the
model’s F1 score by 4.7 percentage points on the standard test
set, by 7.8 percentage points under data distribution changes,
and by 12.3 percentage points on unseen fault types. This
fully demonstrates the importance of self-supervised learning
in improving model generalization capability, especially in the
fault detection field where labeled data is scarce [50].

D. Results Discussion

Through comprehensive analysis of the experimental results,
we can summarize the following main findings: First, large
model-based fault detection methods significantly outperform
traditional methods in terms of accuracy, real-time perfor-
mance, and early warning capability. In particular, our method
reduces average detection latency to 25.3 seconds, 82.4% less
than traditional rule-based methods, providing ample response
time for system stability enhancement. Second, our designed
stability enhancement mechanism can effectively reduce sys-
tem downtime, decreasing it by an average of 64.7%, and
significantly improving system throughput stability during
faults. Third, through self-supervised learning and multi-task
pre-training, our method demonstrates strong robustness and
generalization capability, able to adapt to changes in system
behavior and new fault patterns.

Compared to our expected results, the experimental data
generally meets design goals, and in some aspects even
exceeds expectations. For example, in terms of early warn-
ing capability, we originally planned to achieve an average
warning time of 50 seconds, but the actual result reached
68.7 seconds. However, we also noticed some differences
from expectations. For configuration error faults, although our
method outperforms comparative methods, the effect is not as

https://www.ijetaa.com/article/view/132/ 8.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

TABLE IV
COMPARISON OF THROUGHPUT COEFFICIENT OF VARIATION (CV) FOR DIFFERENT METHODS

Method Resource Exhaustion Service Anomaly Network Issues Configuration Errors Average
No Intervention 0.42 0.38 0.45 0.36 0.40
Rule-based 0.31 0.29 0.38 0.33 0.33
Machine Learning 0.28 0.26 0.34 0.30 0.30
Deep Learning 0.23 0.22 0.29 0.27 0.25
Our Method 0.17 0.19 0.25 0.23 0.21

TABLE V
F1 SCORE(%) CHANGES UNDER DATA DISTRIBUTION CHANGES

Method Baseline Load Surge New Service Config Change Avg Decay
Rule-based 81.5 68.2 (-13.3) 72.1 (-9.4) 70.6 (-10.9) -11.2
Machine Learning 87.6 75.8 (-11.8) 79.3 (-8.3) 78.1 (-9.5) -9.9
Deep Learning 91.5 83.6 (-7.9) 85.2 (-6.3) 84.3 (-7.2) -7.1
Basic Transformer 93.6 87.2 (-6.4) 88.5 (-5.1) 87.8 (-5.8) -5.8
Our Method 96.2 92.4 (-3.8) 93.1 (-3.1) 92.8 (-3.4) -3.4

significant as for other fault types, with a downtime reduction
percentage of only 52.1%. This indicates that the complexity
and diversity of configuration errors still present challenges
for large model-based methods, requiring further research and
improvement.

Our experimental results also validate some important the-
oretical assumptions. First, large models can indeed capture
complex dependencies and anomalous patterns in distributed
systems, performing excellently especially when process-
ing multi-source heterogeneous data. Second, self-supervised
learning is an effective approach to solving the problem of
scarce labeled data in the fault detection field, significantly
improving model generalization capability. Third, tightly in-
tegrating fault detection with stability enhancement into a
closed-loop system can significantly improve system self-
healing capability and overall reliability.

However, our research also has some limitations. First,
although our model has been optimized for computational
efficiency, it still requires more computational resources com-
pared to simple rule-based methods. Second, there is still room
for improvement in our method’s accuracy under extremely
complex fault scenarios (such as multiple faults occurring si-
multaneously). Third, our experiments were mainly conducted
in simulated environments, and although efforts were made
to reproduce real environment characteristics, there may still
be differences from actual production environments. These
limitations will be further studied and addressed in future
work.

VI. DISCUSSION

A. Innovation and Advantages

This research demonstrates innovation and advantages in
multiple aspects. First, in applying large models to real-time
fault detection, we propose a complete technical approach,
from self-supervised pre-training to real-time inference opti-
mization to multi-scale anomaly scoring, forming an end-to-
end solution. Compared to traditional fault detection methods,
our method does not require numerous manually defined rules
and can automatically learn normal behavior patterns and

anomalous features of the system. This not only reduces
deployment and maintenance costs but also improves the sys-
tem’s ability to adapt to environmental changes. In particular,
our designed self-supervised learning tasks enable the model
to learn from large amounts of unlabeled data, solving the
problem of scarce labeled data in the fault detection field.
Experimental results show that this method improves detection
accuracy by 14.7 percentage points compared to traditional
methods and reduces detection latency by 82.4%. Second, our
proposed real-time optimization strategies, including model
pruning, quantization, and incremental inference, successfully
address the challenges of applying large models in real-
time scenarios. Through these optimizations, we reduced the
model’s average inference time from 217 milliseconds for stan-
dard Transformers to 53 milliseconds, meeting the real-time
requirements of high-frequency monitoring. This breakthrough
enables large model technology to be truly applied to fault
detection scenarios with high real-time requirements.

In terms of closed-loop stability enhancement, our innova-
tion lies in designing an intelligent scheduling strategy that
can automatically select the most suitable stability enhance-
ment measures based on fault type and system status. Unlike
traditional fixed response strategies, our method achieves dy-
namic decision-making and continuously evaluates and adjusts
strategy execution effects through feedback mechanisms. Ex-
perimental results show that this closed-loop control method
reduces system downtime by an average of 64.7% when
facing various faults, 14.8 percentage points higher than tradi-
tional methods. Particularly for resource exhaustion faults, our
method reduces downtime by 78.5%, demonstrating excellent
practical effects. Additionally, our method also performs well
in terms of throughput stability, with an average coefficient of
variation of only 0.21, 47.5% lower than no-intervention sit-
uations. This means the system can maintain relatively stable
service quality during faults, reducing user experience fluc-
tuations, which is particularly important for business-critical
applications. Compared to simple fault detection or stability
enhancement methods, our integrated framework can achieve

https://www.ijetaa.com/article/view/132/ 9.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

faster fault detection and more precise stability measures,
significantly improving overall system reliability.

B. Limitations

Despite the significant achievements of this research, there
are still some limitations that need to be addressed in fu-
ture work. First, computational resource requirements and
deployment costs are important factors limiting the widespread
application of the method. Although we have reduced in-
ference time through model optimization, the training and
deployment of large models still require high computational
resources. Especially in edge devices and resource-constrained
environments, directly deploying the complete model may face
challenges. Our experiments show that even after optimization,
our method still consumes about 5 times the computational
resources of simple rule-based methods. This may limit its ap-
plication in some scenarios, especially in cost-sensitive small
and medium-sized systems. Second, the method’s dependence
on data quality is also a potential limitation. Although self-
supervised learning reduces the need for labeled data, it still
requires large amounts of high-quality historical monitoring
data to learn normal behavior patterns of the system. In
newly deployed systems or environments with imperfect data
collection, the initial performance of the model may not reach
expected levels. Our experiments show that when training
data is reduced to 30% of the original, model performance
decreases by an average of 8.7 percentage points, indicating
that data volume has a significant impact on model quality.

Furthermore, although our method performs excellently in
experimental environments, its effectiveness in real production
environments may vary due to system complexity and diver-
sity. Especially when facing extremely rare fault patterns or
multiple fault cascades, the model’s generalization capability
may face challenges. Our unseen fault type experiments show
that although the model achieves an F1 score of 87.3% on new
fault types, this is still lower than the 96.2% on known fault
types, indicating room for improvement in generalization capa-
bility. Another limitation is insufficient model interpretability.
Although we have implemented interpretability mechanisms
such as attention weight visualization, the decision process of
large models is still relatively opaque, which may affect opera-
tions personnel’s trust in system judgments. In critical business
systems, lack of sufficient interpretability may become an
obstacle to adopting such technology. Our user study shows
that approximately 30% of operations personnel expressed a
lack of sufficient understanding of model decisions, affecting
their trust in critical scenarios. Finally, the relatively weak
performance of the method on specific fault types such as con-
figuration errors is also a limitation worth noting. These types
of faults typically lack obvious numerical feature changes
and rely more on understanding semantic relationships be-
tween configuration items, which still presents challenges for
current model architectures. Experimental results show that
on configuration error faults, our method’s F1 score is 4.7
percentage points lower than on resource exhaustion faults,

and the downtime reduction percentage is also significantly
lower.

C. Future Research Directions

Based on the findings and limitations of this research,
we propose several valuable future research directions. First,
model lightweight design and edge device adaptation are key
to expanding the application range of the method. Future
research can explore techniques such as knowledge distillation,
neural architecture search, and adaptive quantization to further
reduce computational and storage requirements of the model,
enabling it to be deployed in resource-constrained environ-
ments. In particular, research on how to effectively transfer
knowledge from large models to lightweight models while
maintaining key performance indicators will be an important
direction. Preliminary experiments show that through domain-
specific knowledge distillation, model size can be reduced by
80% while losing less than 3% accuracy. Second, multi-modal
data fusion is an important path to improving detection com-
prehensiveness and accuracy. Future work can explore how
to more effectively integrate multi-source heterogeneous data
such as system logs, performance metrics, tracing data, and
configuration information to build more comprehensive system
health state representations. In particular, research on how
to handle asynchrony and multi-scale characteristics between
different types of data, and how to extract complementary
information from them, will be key to improving model
generalization capability.

Further integration with control theory is also a promis-
ing research direction. Future work can explore combining
advanced control theories such as Model Predictive Control
(MPC) and adaptive control with large model technology
to build more intelligent closed-loop control systems. This
combination can enhance the theoretical foundation of stability
enhancement strategies, enabling systems to more precisely
predict and control behavior evolution under fault conditions.
Preliminary research shows that methods combining control
theory can improve stability by more than 15% when handling
dynamically changing system loads. Additionally, enhancing
model interpretability and confidence assessment is also an
important research direction. Future research can explore how
to provide more transparent, more understandable fault de-
tection results, including uncertainty quantification, decision
path visualization, and counterfactual explanations. This will
improve operations personnel’s understanding and trust in
model decisions, promoting the application of technology in
critical business systems. Finally, exploring the application of
federated learning and privacy protection technologies in fault
detection also has important value. This will enable different
organizations to share fault experiences and model knowledge
while protecting data privacy, accelerating model adaptation
to new environments and improving detection capabilities for
rare faults.

https://www.ijetaa.com/article/view/132/ 10.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

VII. CONCLUSION

A. Research Summary
This research proposes a real-time fault detection and stabil-

ity enhancement framework based on large models, aiming to
address reliability challenges in distributed systems and high-
concurrency environments. Our method enables large models
to learn normal behavior patterns of the system from unlabeled
data through self-supervised learning technologies and detect
anomalous states deviating from these patterns in real-time. To
meet real-time monitoring requirements, we designed a series
of optimization strategies, including model pruning, quanti-
zation, and incremental inference, significantly improving the
inference efficiency of large models. Additionally, we built an
intelligent stability enhancement system that can automatically
trigger corresponding repair measures based on detected fault
types, forming closed-loop control and improving system self-
healing capabilities.

Experimental results show that our method significantly
outperforms traditional methods in terms of fault detection
accuracy, real-time performance, and early warning capabil-
ity. On 500 test fault samples, our method achieved an F1
score of 96.2%, 2.6 percentage points higher than the closest
comparative method, with an average detection latency of
only 25.3 seconds, 82.4% less than traditional rule-based
methods. More importantly, our method can issue warnings on
average 68.7 seconds before significant system performance
degradation, providing valuable response time for system
operations personnel. In terms of stability enhancement, our
method reduces system downtime by an average of 64.7% and
controls the throughput coefficient of variation during faults
to 0.21, 47.5% lower than no-intervention situations. These
results fully demonstrate the practical value of large model-
based fault detection and stability enhancement methods.

The contributions of this research to the system reliability
field are mainly reflected in three aspects. First, our proposed
self-supervised learning framework provides an effective ap-
proach to solving the problem of scarce labeled data in the
fault detection field, reducing model dependence on expert
knowledge and manual annotation. Second, our real-time
optimization strategies address key challenges of applying
large models in real-time scenarios, laying the foundation for
promoting large model technology in the system monitoring
field. Finally, our designed closed-loop stability enhancement
mechanism tightly combines fault detection with automatic
repair, improving system self-healing capabilities and overall
reliability, providing innovative solutions for building more
resilient distributed systems.

B. Future Outlook
As the scale and complexity of distributed systems continue

to grow, fault detection and stability enhancement will remain
core challenges in the system reliability field. Looking ahead,
we believe this research can be further developed in the
following directions. First, model lightweight design and edge
deployment are important directions to expand the applica-
tion range of the technology. By further optimizing model

structure and inference strategies, enabling large models to
run on resource-constrained edge devices will provide new
possibilities for reliability assurance of edge computing and
IoT systems. Second, multi-modal data fusion will be key
to improving detection comprehensiveness and accuracy. By
more effectively integrating multi-source heterogeneous data
such as system logs, performance metrics, tracing data, and
configuration information, more comprehensive system health
state representations can be built, improving the ability to
identify complex fault patterns.

The deep integration of artificial intelligence and control
theory is also a highly promising research direction. Com-
bining advanced control theories such as Model Predictive
Control and adaptive control with large model technology can
build more intelligent closed-loop control systems, improving
the ability to predict and control dynamic behavior of systems.
Additionally, enhancing model interpretability and confidence
assessment will promote the application of technology in
critical business systems. By providing more transparent, more
understandable fault detection results, operations personnel’s
trust and acceptance of model decisions can be improved.
Finally, exploring the application of federated learning and
privacy protection technologies in fault detection also has
important value. This will enable different organizations to
share fault experiences and model knowledge while protecting
data privacy, accelerating model adaptation to new environ-
ments and improving detection capabilities for rare faults. With
the continuous development and improvement of technology,
it will provide strong support for building more reliable,
resilient, and autonomous computing systems, pushing the
system reliability field to new heights.

REFERENCES

[1] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang, “Rapid
and robust impact assessment of software changes in large internet-based
services,” in Proc. ACM Internet Meas. Conf., 2022, pp. 1-14.

[2] C. Duan, Y. Yang, T. Jia, G. Liu, J. Liu, H. Zhang, et al., “FAMOS: Fault
diagnosis for Microservice Systems through Effective Multi-modal Data
Fusion,” in 2025 IEEE/ACM 47th International Conference on Software
Engineering (ICSE), 2025, pp. 610-610.

[3] H. Guo, X. Lin, J. Yang, Y. Zhuang, J. Bai, T. Zheng, et al., “Translog: A
unified transformer-based framework for log anomaly detection,” arXiv
preprint arXiv:2201.00016, 2021.

[4] Y. Lin, “Self-Supervised Distributed Machine Learning for Robust
Containerized Systems,” North Carolina State University, 2023.

[5] S. Bharany, S. Sharma, O. I. Khalaf, G. M. Abdulsahib, A. S. Al
Humaimeedy, T. H. Aldhyani, et al., “A systematic survey on energy-
efficient techniques in sustainable cloud computing,” Sustainability, vol.
14, no. 10, p. 6256, 2022.

[6] S. Chakraborty, S. K. Pandey, S. Maity, and L. Dey, “Detection and
classification of novel attacks and anomaly in IoT network using rule
based deep learning model,” SN Computer Science, vol. 5, no. 8, p.
1056, 2024.

[7] T. Khan, W. Tian, G. Zhou, S. Ilager, M. Gong, and R. Buyya, “Ma-
chine learning (ML)-centric resource management in cloud computing:
A review and future directions,” Journal of Network and Computer
Applications, vol. 204, p. 103405, 2022.

[8] H. Wang, D. Feng, and K. Liu, “Fault detection and diagnosis for
multiple faults of VAV terminals using self-adaptive model and layered
random forest,” Building and Environment, vol. 193, p. 107667, 2021.

[9] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich, “A survey
on anomaly detection for technical systems using LSTM networks,”
Computers in Industry, vol. 131, p. 103498, 2021.

https://www.ijetaa.com/article/view/132/ 11.

https://www.ijetaa.com/article/view/132/


V olume2, Issue2 International Journal of Emerging Technologies and Advanced Applications February,2025

[10] A. Terbuch, P. O’Leary, N. Khalili-Motlagh-Kasmaei, P. Auer, A.
Zöhrer, and V. Winter, “Detecting anomalous multivariate time-series
via hybrid machine learning,” IEEE transactions on instrumentation and
measurement, vol. 72, pp. 1-11, 2023.

[11] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Trans-
formers in time series: A survey,” arXiv preprint arXiv:2202.07125,
2022.

[12] L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales, “Self-supervised
representation learning: Introduction, advances, and challenges,” IEEE
Signal Processing Magazine, vol. 39, no. 3, pp. 42-62, 2022.

[13] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
et al., “Emergent abilities of large language models,” arXiv preprint
arXiv:2206.07682, 2022.

[14] S. Francy and R. Singh, “Edge ai: Evaluation of model compres-
sion techniques for convolutional neural networks,” arXiv preprint
arXiv:2409.02134, 2024.

[15] H. Zhang, M. Shen, Y. Huang, Y. Wen, Y. Luo, G. Gao, and K. Guan,
“A serverless cloud-fog platform for dnn-based video analytics with
incremental learning,” arXiv preprint arXiv:2102.03012, 2021.

[16] B. Barua and M. S. Kaiser, “Enhancing Resilience and Scalabil-
ity in Travel Booking Systems: A Microservices Approach to Fault
Tolerance, Load Balancing, and Service Discovery,” arXiv preprint
arXiv:2410.19701, 2024.

[17] Y. Zhu, J. Wang, B. Li, X. Tang, H. Li, N. Zhang, and Y. Zhao,
“Root Cause Localization for Microservice Systems in Cloud-edge
Collaborative Environments,” arXiv preprint arXiv:2406.13604, 2024.

[18] D. Saxena, I. Gupta, A. K. Singh, and C. N. Lee, “A fault tolerant elastic
resource management framework toward high availability of cloud
services,” IEEE Transactions on Network and Service Management, vol.
19, no. 3, pp. 3048-3061, 2022.

[19] M. B. Taha, Y. Sanjalawe, A. Al-Daraiseh, S. Fraihat, and S. Al-E’mari,
“Proactive auto-scaling for service function chains in cloud computing
based on deep learning,” IEEE Access, 2024.

[20] A. Vervaet, “Monilog: An automated log-based anomaly detection
system for cloud computing infrastructures,” in 2021 IEEE 37th inter-
national conference on data engineering (ICDE), 2021, pp. 2739-2743.

[21] S. Chaabene, A. Boudaya, B. Bouaziz, and L. Chaari, “An overview
of methods and techniques in multimodal data fusion with application
to healthcare,” International Journal of Data Science and Analytics, pp.
1-25, 2025.

[22] Y. Wang, H. Dong, H. Wu, W. Wang, and J. Zhang, “A neural network
model based on attention pooling and adaptive multi-level feature fusion
for arrhythmia automatic detection,” Computer Methods in Biomechan-
ics and Biomedical Engineering, pp. 1-15, 2025.

[23] A. Barbalau, R. T. Ionescu, M. I. Georgescu, J. Dueholm, B. Ramachan-
dra, K. Nasrollahi, et al., “SSMTL++: Revisiting self-supervised multi-
task learning for video anomaly detection,” Computer Vision and Image
Understanding, vol. 229, p. 103656, 2023.

[24] A. S. Kumar, S. Raja, N. Pritha, H. Raviraj, R. B. Lincy, and J. J. Rubia,
“An adaptive transformer model for anomaly detection in wireless sensor
networks in real-time,” Measurement: Sensors, vol. 25, p. 100625, 2023.

[25] C. Liu, L. Gong, and X. Chen, “Multi-scale spatiotemporal normality
learning for unsupervised video anomaly detection,” Applied Intelli-
gence, vol. 55, no. 7, p. 584, 2025.

[26] H. Zhang, X. Jia, and C. Chen, “Deep Learning-Based Real-Time Data
Quality Assessment and Anomaly Detection for Large-Scale Distributed
Data Streams,” 2025.

[27] Z. Chen, W. Qin, G. He, J. Li, R. Huang, G. Jin, and W. Li, “Explain-
able deep ensemble model for bearing fault diagnosis under variable
conditions,” IEEE Sensors Journal, vol. 23, no. 15, pp. 17737-17750,
2023.

[28] R. Krishnan and S. Durairaj, “Reliability and performance of resource
efficiency in dynamic optimization scheduling using multi-agent mi-
croservice cloud-fog on IoT applications,” Computing, vol. 106, no. 12,
pp. 3837-3878, 2024.

[29] P. Habibi and A. Leon-Garcia, “SliceSphere: Agile Service Orchestration
and Management Framework for Cloud-native Application Slices,” IEEE
Access, 2024.

[30] Z. Zhou, L. Wang, C. Song, Y. Shen, M. Li, and S. Liu, “Challenges of
Data Consistency in High-Concurrency Environments: Algorithms and
Implementation for the Electric Power Industrial Internet Platform,” in
2024 5th International Conference on Information Science, Parallel and
Distributed Systems (ISPDS), 2024, pp. 526-530.

[31] T. M. van Vugt and T. Malik, “A Practical Analysis of Open-Source
Security Tools in Microservice Kubernetes Environments,” in 2023
Cyber Research Conference-Ireland (Cyber-RCI), 2023, pp. 1-8.

[32] M. Mora-Cantallops, S. Sánchez-Alonso, E. Garcı́a-Barriocanal, and M.
A. Sicilia, “Traceability for trustworthy ai: A review of models and
tools,” Big Data and Cognitive Computing, vol. 5, no. 2, p. 20, 2021.

[33] N. Suleiman and Y. Murtaza, “Scaling Microservices for Enterprise
Applications: Comprehensive Strategies for Achieving High Availability,
Performance Optimization, Resilience, and Seamless Integration in
Large-Scale Distributed Systems and Complex Cloud Environments,”
Applied Research in Artificial Intelligence and Cloud Computing, vol.
7, no. 6, pp. 46-82, 2024.

[34] J. Zhao, J. Xiong, H. Yu, Y. Bu, K. Zhao, J. Yan, et al., “Reliability
evaluation of community integrated energy systems based on fault
incidence matrix,” Sustainable Cities and Society, vol. 80, p. 103769,
2022.

[35] S. Zhang, S. Xia, W. Fan, B. Shi, X. Xiong, Z. Zhong, et al., “Failure
diagnosis in microservice systems: A comprehensive survey and anal-
ysis,” ACM Transactions on Software Engineering and Methodology,
2024.

[36] P. Kumari and P. Kaur, “A survey of fault tolerance in cloud computing,”
Journal of King Saud University-Computer and Information Sciences,
vol. 33, no. 10, pp. 1159-1176, 2021.

[37] T. Fedullo, A. Morato, F. Tramarin, L. Rovati, and S. Vitturi, “A
comprehensive review on time sensitive networks with a special focus
on its applicability to industrial smart and distributed measurement
systems,” Sensors, vol. 22, no. 4, p. 1638, 2022.

[38] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, et al., “Under-
standing and addressing quality attributes of microservices architecture:
A Systematic literature review,” Information and software technology,
vol. 131, p. 106449, 2021.

[39] A. Mahida, P. Chintale, and H. Deshmukh, “Enhancing Fraud Detection
in Real Time using DataOps on Elastic Platforms,” 2024.

[40] F. Pérez-Bueno, L. Garcı́a, G. Maciá-Fernández, and R. Molina, “Lever-
aging a probabilistic PCA model to understand the multivariate statistical
network monitoring framework for network security anomaly detection,”
IEEE/ACM Transactions on Networking, vol. 30, no. 3, pp. 1217-1229,
2022.

[41] J. Zipfel, F. Verworner, M. Fischer, U. Wieland, M. Kraus, and P.
Zschech, “Anomaly detection for industrial quality assurance: A com-
parative evaluation of unsupervised deep learning models,” Computers
& Industrial Engineering, vol. 177, p. 109045, 2023.

[42] W. Sakong, J. Kwon, K. Min, S. Wang, and W. Kim, “Anomaly
Transformer Ensemble Model for Cloud Data Anomaly Detection,”
IEEE Transactions on Cloud Computing, 2024.

[43] M. Zhang, B. Yuan, H. Li, and K. Xu, “LLM-Cloud Complete: Lever-
aging cloud computing for efficient large language model-based code
completion,” Journal of Artificial Intelligence General science (JAIGS)
ISSN: 3006-4023, vol. 5, no. 1, pp. 295-326, 2024.

[44] M. S. Rahaman, A. Islam, T. Cerny, and S. Hutton, “Static-analysis-
based solutions to security challenges in cloud-native systems: system-
atic mapping study,” Sensors, vol. 23, no. 4, p. 1755, 2023.

[45] P. Jieyang, A. Kimmig, W. Dongkun, Z. Niu, F. Zhi, W. Jiahai, et al.,
“A systematic review of data-driven approaches to fault diagnosis and
early warning,” Journal of Intelligent Manufacturing, vol. 34, no. 8, pp.
3277-3304, 2023.

[46] Y. Jiang, J. Kang, D. Niyato, X. Ge, Z. Xiong, C. Miao, and X. Shen,
“Reliable distributed computing for metaverse: A hierarchical game-
theoretic approach,” IEEE Transactions on Vehicular Technology, vol.
72, no. 1, pp. 1084-1100, 2022.

[47] A. R. Abbasi, “Fault detection and diagnosis in power transformers: a
comprehensive review and classification of publications and methods,”
Electric Power Systems Research, vol. 209, p. 107990, 2022.

[48] S. Li, Z. Wang, F. Juefei-Xu, Q. Guo, X. Li, and L. Ma, “Common
corruption robustness of point cloud detectors: Benchmark and enhance-
ment,” IEEE Transactions on Multimedia, 2023.

[49] S. Ding, Y. Xu, Z. Lu, F. Tang, T. Li, and J. Ge, “Power Mi-
croservices Troubleshooting by Pretrained Language Model with Multi-
source Data,” in 2024 IEEE International Symposium on Parallel and
Distributed Processing with Applications (ISPA), 2024, pp. 1768-1775.

[50] Y. Xu, X. Lu, T. Gao, and R. Meng, “A Self-Supervised Multi-view
Contrastive Learning Network for the Fault Diagnosis of Rotating
Machinery under Limited Annotation Information,” IEEE Transactions
on Instrumentation and Measurement, 2025.

https://www.ijetaa.com/article/view/132/ 12.

https://www.ijetaa.com/article/view/132/

	Introduction
	Research Background
	Research Significance

	Related Work
	Overview of Fault Detection Technologies
	Progress in Large Model Technology
	Current Status of Stability Enhancement Research

	Methodology
	Overall Framework
	Data Collection and Preprocessing
	Large Model Design
	Fault Detection Module
	Stability Enhancement Mechanism

	Experimental Design
	Experimental Environment
	Dataset and Fault Injection
	Evaluation Metrics
	Comparison Methods

	Experimental Results and Analysis
	Fault Detection Performance
	Stability Enhancement Effect
	Model Robustness and Generalization Capability
	Results Discussion

	Discussion
	Innovation and Advantages
	Limitations
	Future Research Directions

	Conclusion
	Research Summary
	Future Outlook

	References

