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Abstract—Addressing the challenges of complex test case
design and insufficient coverage in functional testing of large lan-
guage models, this paper presents a multi-dimensional constraint-
based test case generation framework. The framework defines
constraint rules across four dimensions: syntactic correctness,
semantic consistency, task relevance, and boundary conditions,
employing reinforcement learning methods to optimize the test
case generation process. Through the design of reward function-
based generation strategies, the system can automatically produce
high-quality functional test samples covering core tasks including
text classification, sentiment analysis, and machine translation.
Experimental results demonstrate that test cases generated by
this method achieve a 42% improvement in functional coverage
compared to random generation methods and a 28% increase
in defect detection rate. Further ablation experiments validate
the effectiveness of each dimensional constraint, providing a
systematic solution for large language model quality assurance.

Index Terms—Large language models, Test case generation,
Multi-dimensional constraints, Reinforcement learning, Func-
tional testing

I. INTRODUCTION

With the widespread application of large language models
across various domains, their quality assurance and functional
verification have become increasingly critical [1]. The com-
plexity and non-deterministic nature of large language models
present significant challenges to traditional software testing
methodologies, particularly in test case design and generation
[2], [3]. Current test case generation methods primarily rely
on manual design or simple random generation, which are not
only inefficient but also struggle to guarantee test coverage
and effectiveness [4], [5].

Existing research indicates that functional testing of large
language models requires consideration of multiple dimen-
sional factors, including syntactic correctness, semantic con-
sistency, task relevance, and boundary condition handling
capabilities [6], [7]. However, there currently lacks a system-
atic framework to comprehensively consider these constraint
conditions and automatically generate high-quality test cases.
Simultaneously, how to evaluate the quality and effectiveness

of generated test cases remains an urgent problem to be solved
[8], [9]. Reinforcement learning, as an effective optimization
method, has demonstrated tremendous potential in decision
optimization under complex constraint conditions [10], [11].

The main contributions of this paper include: First, we
propose a multi-dimensional constraint-based test case gen-
eration framework that systematically defines key constraint
dimensions affecting large language model functional testing.
Second, we design a reinforcement learning-based test case
generation algorithm that achieves automatic generation of
high-quality test samples through reward function optimiza-
tion. Finally, we construct a comprehensive evaluation system
that quantifies test case quality and effectiveness from multiple
perspectives, providing scientific evaluation standards for large
language model quality assurance.

II. RELATED WORK

A. Current State of Large Language Model Testing Research

Recent years have witnessed rapid development in large
language model testing research, with researchers exploring
model testing and evaluation methods from various perspec-
tives. Peng et al. proposed an interlocking software test case
generation method that decouples the generation process of
test inputs and outputs, significantly improving test case gener-
ation quality for complex problems [12]. Song et al. developed
benchmark test suites that provide standardized evaluation
frameworks for assessing large language model test case
generation capabilities [13]. These studies have laid important
foundations for this field, but still have shortcomings in multi-
dimensional constraint integration and systematic testing.

Qin et al. proposed a white-box unit test case method
oriented toward MC/DC coverage, systematically generating
evaluation programs through control flow structures and vari-
able usage combinations, providing new evaluation approaches
for testing large language model code generation capabili-
ties [14]. However, these methods primarily focus on code
generation tasks, with limited coverage of other core natural
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language processing tasks. Simultaneously, existing research
lacks unified standards for quantitative evaluation of test case
quality, making effective horizontal comparison and evaluation
difficult [15].

B. Constraint-driven Test Generation Methods

Constraint-driven test generation represents an important re-
search direction in software testing, with extensive applications
in hardware description languages and traditional software
system testing [16]. Tan et al. introduced more expressive
domain-specific languages in test data generation, improving
generated data quality through enhanced constraint complexity
[17]. These studies provide theoretical foundations and prac-
tical experience for constraint-driven test generation.

In large language model testing, constraint-driven method
applications remain in early stages. The chain-type multi-
path coverage generation framework combining SVM and
XGBoost enhances large language model understanding of
testing requirements and documentation by formally defining
constraint dependency graphs and converting them to con-
textual constraints [18]. However, existing methods require
further improvement in systematic constraint definition, multi-
dimensional constraint coordination optimization, and con-
straint violation handling mechanisms [19].

C. Reinforcement Learning Applications in Test Optimization

Reinforcement learning demonstrates tremendous potential
in test optimization, particularly in strategy optimization under
complex constraint conditions [20]. Tessler et al. proposed
the Reward Constrained Policy Optimization (RCPO) method,
providing effective solutions for constraint optimization prob-
lems by introducing surrogate penalty signals to guide poli-
cies toward constraint satisfaction [10]. This multi-timescale
approach shows good convergence and practicality in handling
complex constraint optimization problems.

In testing applications, reinforcement learning primarily
focuses on test input generation and test strategy optimization.
Kim et al. used deep reinforcement learning to generate test
inputs, achieving significant results in search-based software
testing [11]. However, applying reinforcement learning to
large language model functional testing still faces numerous
challenges, including high-dimensional state spaces, complex
reward function design, and convergence stability issues [15].

III. MULTI-DIMENSIONAL CONSTRAINT FRAMEWORK
DESIGN

A. Constraint Dimension Analysis and Definition

Functional testing of large language models requires consid-
eration of multiple interrelated constraint dimensions that col-
lectively determine test case quality and effectiveness. Based
on an in-depth analysis of large language model characteristics
and summarization of existing testing practices, we identify
four key constraint dimensions: syntactic correctness, semantic
consistency, task relevance, and boundary conditions.

Syntactic correctness constraints ensure that generated test
cases conform syntactically to target task requirements. For

natural language processing tasks, this includes correct vocab-
ulary usage, reasonable syntactic structures, and adherence to
grammatical rules. Syntactic correctness constraints can be im-
plemented through formalized grammatical rules and language
model checking, ensuring test inputs do not affect test result
validity due to basic grammatical errors. Semantic consistency
constraints focus on coherence and logic at the semantic
level, ensuring test content has clear semantic expression and
reasonable logical relationships. This constraint is particularly
important because semantically inconsistent test cases may
lead to unpredictable model outputs, thereby affecting test
result reliability.

Task relevance constraints ensure that generated test cases
are highly relevant to target testing tasks, effectively examining
model performance in specific functional aspects. Different
natural language processing tasks have different characteristics
and requirements; test cases must be specifically designed
to cover the core functional points of tasks. Boundary con-
dition constraints involve model performance under extreme
or edge cases; such test cases often reveal potential model
defects and limitations. Boundary conditions include input
length extremes, special character handling, rare vocabulary
recognition, and abnormal format processing.

B. Constraint Formalization
To achieve automated constraint processing and optimiza-

tion, we employ mathematical formalization methods to model
each constraint dimension. Let the test case set be T =
{t1, t2, . . . , tn}, where each test case ti contains an input
component xi and an expected output component yi.

Syntactic correctness constraint is defined as:

Csyntax(ti) =

m∏
j=1

Gj(xi)

where Gj represents the j-th grammatical rule checking
function, and m is the total number of grammatical rules.
Syntactic correctness constraints require all grammatical rule
checks to pass, with a constraint value of 1 indicating con-
straint satisfaction.

Semantic consistency constraint is measured through seman-
tic similarity and logical coherence:

Csemantic(ti) = α · sim(xi, yi) + β · coherence(xi)

where sim(xi, yi) represents semantic similarity between
input and output, coherence(xi) represents internal logical
coherence of input, and α and β are weight parameters.

Task relevance constraint is calculated based on similarity
of task feature vectors:

Crelevance(ti, task) = cosine(feature(ti), feature(task))

where feature(·) is the feature extraction function, measur-
ing test case relevance to target tasks through cosine similarity.

Boundary condition constraint is defined as a combination
of multiple boundary checking functions:

Cboundary(ti) =

p∑
k=1

wk ·Bk(ti)

https://www.ijetaa.com/article/view/134/ 2.

https://www.ijetaa.com/article/view/134/


V olume2, Issue4 International Journal of Emerging Technologies and Advanced Applications April, 2025

where Bk is the k-th boundary condition checking function,
wk is the corresponding weight, and p is the total number of
boundary conditions.

C. Constraint Optimization Objective Function

Considering all constraint dimensions comprehensively, we
construct a multi-objective optimization function to guide the
test case generation process. Overall constraint satisfaction is
defined as:

Constrainttotal(T ) = λ1

n∑
i=1

Csyntax(ti)+

λ2

n∑
i=1

Csemantic(ti)+

λ3

n∑
i=1

Crelevance(ti, task)+

λ4

n∑
i=1

Cboundary(ti)

(1)

where λ1, λ2, λ3, λ4 are weight parameters for each con-
straint dimension, adjustable according to specific task re-
quirements. The optimization objective is to maximize overall
quality and coverage of test case sets while satisfying all
constraints.

To ensure coordination among constraints, we introduce
a constraint conflict detection mechanism. When conflicts
exist between different constraints, the system balances and
adjusts according to predefined priority rules. As shown in
Figure 1, this mechanism ensures generated test cases satisfy
primary constraints while minimizing violations of secondary
constraints.

Fig. 1. Multi-dimensional Constraint Test Case Generation Framework Flow
Chart

IV. REINFORCEMENT LEARNING-BASED TEST CASE
GENERATION ALGORITHM

A. Reinforcement Learning Model Design

Based on the multi-dimensional constraint framework, we
design a reinforcement learning model to automatically gen-
erate high-quality test cases. As illustrated in Figure 2, the
model frames the test case generation process as a Markov

Decision Process (MDP), where agents learn optimal test case
generation strategies through environment interaction.

Fig. 2. Reinforcement Learning-based Test Case Generation Algorithm
Architecture

State space S contains the current test case partial construc-
tion state, satisfied constraint information, and target task fea-
ture representations. Specifically, state st can be represented as
a triplet (partial test, constraint status, task features),
where partial test represents the currently partially con-
structed test case, constraint status records satisfaction
status of each dimensional constraint, and task features
contains feature vectors of target testing tasks.

Action space A defines test case construction operations that
agents can execute, including vocabulary selection, sentence
structure construction, and parameter setting. To improve
generation efficiency, we decompose complex generation op-
erations into a series of atomic operations, with each atomic
operation corresponding to a specific action. Action design
considers different testing task characteristics, ensuring gener-
ated test cases can effectively cover various functional points.

Reward function R is the core component of the reinforce-
ment learning model, directly affecting learning effectiveness
and generation quality. We design a multi-component reward
function that comprehensively considers constraint satisfac-
tion, test coverage, and test effectiveness:

R(st, at, st+1) = w1 ·Rconstraint(st+1)+

w2 ·Rcoverage(st+1)+

w3 ·Reffectiveness(st+1)−
w4 ·Rpenalty(st, at)

(2)

where Rconstraint is calculated based on the aforementioned
constraint satisfaction, Rcoverage measures test coverage im-
provement, Reffectiveness evaluates test case defect detection
capability, and Rpenalty is the penalty term for constraint
violations or invalid operations.

B. Reward Function Optimization Strategy

Reward function design is a key factor in reinforcement
learning success, directly affecting agent learning effective-
ness and final performance. We adopt a hierarchical reward
structure, decomposing complex test case generation tasks into
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multiple sub-objectives, with each sub-objective corresponding
to a specific reward component.

Constraint reward component Rconstraint is calculated di-
rectly based on the aforementioned multi-dimensional con-
straint framework:

Rconstraint(st+1) =

4∑
i=1

αi · Ci(testcurrent) (3)

where Ci corresponds to syntactic, semantic, relevance, and
boundary condition constraints respectively, and αi are dy-
namically adjusted weight parameters. Weight parameters are
adaptively adjusted according to current learning stages and
task characteristics, ensuring more focus on basic constraints
in early learning and advanced constraints in later stages.

Coverage reward component Rcoverage encourages genera-
tion of diverse test cases, avoiding redundancy and repetition:

Rcoverage(st+1) = diversity(testcurrent, testset)

·importance(testcurrent)
(4)

where the diversity function measures current test case dif-
ferences from existing test sets, and the importance function
evaluates test case importance levels. Diversity calculation
uses feature vector-based distance metrics, while importance
evaluation considers the number and criticality of functional
points that test cases may cover.

Effectiveness reward component Reffectiveness is based on
expected defect detection capabilities of test cases:

Reffectiveness(st+1) =

k∑
j=1

prob detectj(testcurrent)

·severityj

(5)

where prob detectj represents the probability of test cases
detecting the j-th type of defect, and severityj is the defect
severity weight. Defect detection probabilities are estimated
through historical testing data and model analysis, while
severity weights are determined according to defect impacts
on system functionality.

To address reward sparsity issues, we introduce a potential
reward-based enhancement mechanism. Through pre-trained
evaluation models, agents can obtain intermediate reward
signals before test case complete generation, accelerating the
learning process. Simultaneously, we adopt curriculum learn-
ing strategies, starting training from simple testing scenarios
and gradually increasing task complexity to improve learning
efficiency and stability.

C. Algorithm Implementation and Optimization

We adopt the Proximal Policy Optimization (PPO) algo-
rithm as the basic reinforcement learning framework, with
specialized optimizations for test case generation tasks. PPO
algorithms possess good stability and convergence properties,
suitable for handling continuous action spaces and complex
constraint conditions.

The core update process of the algorithm is as follows:

1. Policy network πθ generates action probability distribu-
tions based on current states 2. Value network Vϕ estimates
state values 3. Collect experience trajectories and calculate
advantage functions 4. Update policy parameters using clipped
importance sampling 5. Update value network parameters to
minimize value estimation errors

To improve algorithm performance under constrained en-
vironments, we introduce a constraint-aware policy update
mechanism. When policy updates may lead to constraint viola-
tions, the algorithm automatically adjusts update magnitudes,
ensuring generated test cases always satisfy basic constraint
requirements. This mechanism is implemented by incorpo-
rating constraint gradient information into policy gradient
calculations:

∇θJ(θ) = E[∇θ log πθ(a|s)A(s, a)]− λ

4∑
i=1

∇θCi(s, a) (6)

where A(s, a) is the advantage function, Ci(s, a) are constraint
functions, and λ is the constraint weight parameter.

Additionally, we implement a multi-agent collaboration
mechanism that improves learning efficiency and generation
quality through parallel training of multiple agents and expe-
rience sharing. Different agents can focus on different types
of test case generation, achieving collaborative optimization
through experience sharing and policy fusion. This approach is
particularly suitable for multi-task testing scenarios, capable of
simultaneously generating high-quality test cases for multiple
different testing tasks.

V. EVALUATION SYSTEM CONSTRUCTION

A. Evaluation Metric System Design

Constructing a comprehensive evaluation system is a key
component for verifying the effectiveness of test case genera-
tion frameworks. We design an evaluation metric system from
multiple dimensions, ensuring comprehensive and objective
measurement of generated test case quality and effectiveness.

Functional coverage is the core metric for evaluating test
case quality, measuring the extent to which generated test cases
cover target functionalities. We define functional coverage as:

Coverage =
|Fcovered|
|Ftotal|

(7)

where Fcovered represents the set of functional points covered
by test cases, and Ftotal represents all functional points of
the target system. Functional point identification is based on
task analysis and expert knowledge, ensuring accuracy and
completeness of coverage calculations.

Defect detection rate evaluates test case capabilities to
discover model defects, which is a direct manifestation of
testing effectiveness. Defect detection rate is defined as:

Defect Detection Rate =
|Ddetected|
|Dtotal|

(8)

where Ddetected represents the set of detected defects, and
Dtotal represents all defects existing in the system. To ac-
curately evaluate defect detection capabilities, we establish
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a standard defect database containing different types and
severity levels of known defects.

Test case quality evaluation adopts a multi-dimensional
comprehensive scoring mechanism, considering factors such
as constraint satisfaction, readability, and maintainability:

Quality = w1 · Constraint Satisfaction+

w2 ·Readability+

w3 ·Maintainability+

w4 · Executability

(9)

where weight parameters are determined according to practical
application requirements. Constraint satisfaction is calculated
based on the aforementioned constraint framework, readability
is evaluated through natural language processing techniques,
maintainability considers test case structural clarity and mod-
ification convenience, and executability verifies technical fea-
sibility of test cases.

Generation efficiency metrics measure algorithm practical
usability, including generation time, resource consumption,
and convergence speed:

Efficiency =
Quality Score

T ime Cost ·Resource Cost
(10)

This metric ensures that generated high-quality test cases pos-
sess feasibility and economic viability in practical applications.

The detailed configuration of our evaluation metric system
is presented in Table I.

TABLE I
EVALUATION METRIC SYSTEM DESIGN DETAILS

Evaluation
Dimension

Primary Metrics Calculation Method Weight

Functional
Coverage

Coverage Rate,
Depth Coverage

Based on Functional
Point Mapping

0.3

Defect
Detection
Capability

Detection Rate,
Precision Rate

Comparison with
Standard Defect
Database

0.25

Constraint
Satisfaction

Multi-dimensional
Constraint Score

Constraint Function
Calculation

0.25

Generation
Efficiency

Time, Resource
Consumption

Performance
Monitoring Data

0.2

B. Benchmark Dataset Construction

To ensure evaluation result reliability and comparability,
we construct standardized benchmark datasets. The datasets
contain multiple typical natural language processing tasks,
with each task equipped with detailed functional specifications,
known defect lists, and manually written high-quality test
cases as reference benchmarks.

Text classification task datasets cover sentiment analysis,
topic classification, intent recognition, and other sub-tasks,
containing text samples and classification labels from dif-
ferent domains. Datasets particularly emphasize coverage of
boundary cases, including ambiguous semantics, multi-label
conflicts, domain transfer, and other challenging scenarios.

Machine translation task datasets contain translation samples
from multiple language pairs, covering different language fam-
ilies, text types, and translation difficulties, providing compre-
hensive support for evaluating model multilingual processing
capabilities.

Question answering system task datasets include factual
Q&A, reasoning Q&A, open-ended Q&A, and other types,
testing model knowledge understanding and reasoning capabil-
ities. Datasets contain numerous complex questions requiring
multi-step reasoning, common sense judgment, and logical
analysis, effectively examining model advanced cognitive abil-
ities.

To ensure dataset quality and representativeness, we adopt
strict data screening and annotation processes. All data un-
dergo multiple rounds of expert review, ensuring annotation
accuracy and consistency. Simultaneously, we establish contin-
uous update mechanisms, regularly expanding and optimizing
dataset content according to technological developments and
application requirements.

The configuration information for our benchmark datasets
is summarized in Table II.

TABLE II
BENCHMARK DATASET CONFIGURATION INFORMATION

Task Type Dataset
Scale

Function
Points

Known
Defects

Reference
Test Cases

Text Classifi-
cation

10,000
entries

85 142 520

Sentiment
Analysis

8,500 entries 72 156 420

Machine
Translation

15,000 pairs 118 203 680

Question
Answering

12,000
groups

95 178 550

Text Sum-
marization

6,800 entries 63 134 380

C. Automated Evaluation Process

Automated evaluation processes ensure evaluation process
standardization and repeatability, improving evaluation effi-
ciency and result credibility. The entire evaluation process
is divided into four main stages: test case execution, result
collection, metric calculation, and report generation.

Test case execution stages use standardized testing envi-
ronments and configurations, ensuring all tests are conducted
under consistent conditions. Systems automatically load gen-
erated test cases, invoke target models for testing, and record
detailed execution logs and result data. Abnormal situations
during execution are automatically captured and classified,
providing detailed information for subsequent analysis.

Result collection stages perform standardized processing
and storage of test execution results, establishing unified result
data formats. Systems automatically conduct result validation,
identifying and processing abnormal data to ensure data qual-
ity for subsequent analysis. Simultaneously, systems collect
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performance data during execution, such as response time and
resource usage, providing support for efficiency evaluation.

Metric calculation stages automatically calculate various
metric values according to predefined evaluation metric sys-
tems. Calculation processes adopt parallel processing tech-
nologies to improve computational efficiency. Systems support
custom metric extensions, allowing users to add new evalua-
tion dimensions according to specific requirements. Calcula-
tion results undergo multiple rounds of validation to ensure
computational accuracy.

Report generation stages automatically generate standard-
ized evaluation reports, including detailed metric analysis,
visualization charts, and improvement recommendations. Re-
ports support multiple format outputs, meeting different
user requirements. Simultaneously, systems provide interactive
analysis interfaces, allowing users to deeply explore evaluation
results and conduct comparative analysis.

VI. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS

A. Experimental Environment and Settings

To comprehensively verify the effectiveness of the proposed
framework, we design a series of comparative and ablation
experiments. The experimental environment employs a dis-
tributed computing cluster, configured with NVIDIA A100
GPUs, 256GB memory, and high-speed SSD storage, ensuring
experimental computational requirements are adequately met.
All experiments use identical hardware configurations and
software environments, guaranteeing result comparability and
reproducibility.

Experiments select four representative large language mod-
els as test subjects, including GPT-3.5, GPT-4, Claude-3, and
LLaMA-2, which have widespread applications and represen-
tativeness in natural language processing. For each model,
we conduct testing on five core tasks: text classification,
sentiment analysis, machine translation, question answering
systems, and text summarization. Experimental data comes
from constructed standardized benchmark datasets, ensuring
testing comprehensiveness and objectivity.

Comparison methods include random generation, rule-based
generation, traditional genetic algorithm optimization, and
existing LLM-assisted generation methods. Random gener-
ation serves as a baseline, constructing test cases through
random vocabulary and sentence pattern selection. Rule-based
generation uses predefined templates and rule systems to
generate test cases. Genetic algorithm methods employ tra-
ditional evolutionary computation techniques to optimize test
case generation. Existing LLM-assisted methods use tools like
ChatGPT to assist in test case generation, representing current
mainstream practices.

Experimental parameter settings undergo careful tuning,
with reinforcement learning algorithm learning rate set to
0.0003, batch size of 128, and training rounds of 1000. Con-
straint weight parameters are determined through grid search
for optimal values: syntactic constraint weight λ1 = 0.3,
semantic constraint weight λ2 = 0.25, relevance constraint
weight λ3 = 0.25, and boundary condition constraint weight

λ4 = 0.2. Each experiment runs 10 times repeatedly, reporting
average results and standard deviations to ensure statistical
significance.

B. Main Experimental Results

Experimental results demonstrate that the proposed multi-
dimensional constraint framework achieves significant advan-
tages across all evaluation metrics. In functional coverage, our
method achieves an average improvement of 42% compared
to random generation, 28% compared to rule-based methods,
19% compared to traditional genetic algorithms, and 15%
compared to existing LLM-assisted methods. These results
indicate that systematic consideration of multi-dimensional
constraints can significantly improve test case functional cov-
erage capabilities.

Defect detection rate improvements are even more sig-
nificant, with our method achieving improvements of 28%,
21%, 16%, and 12% compared to various comparison methods
respectively. These results prove the advantages of reinforce-
ment learning optimization strategies in improving testing
effectiveness. Particularly in boundary condition and abnormal
situation detection, our method performs exceptionally well,
generating more test cases capable of exposing potential model
defects.

In test case quality evaluation, our method achieves the
highest scores across constraint satisfaction, readability, and
maintainability dimensions. Constraint satisfaction averages
0.89 (maximum 1.0), significantly higher than other methods’
0.65-0.75 range. Readability scores reach 4.3 (maximum 5.0),
indicating generated test cases possess good natural language
quality. Maintainability scores 4.1, showing generated test
cases have clear structures and are convenient for subsequent
modification and extension.

Regarding generation efficiency, although our method has
slightly higher single-generation time compared to simple
methods, considering significant quality improvements, com-
prehensive efficiency metrics still possess obvious advantages.
Particularly in large-scale test case generation scenarios, our
method can generate large quantities of high-quality test cases
within acceptable time frames through parallel processing and
experience reuse.

C. Ablation Experiment Analysis

To gain deep understanding of each component’s contri-
bution to overall performance, we conduct detailed ablation
experiments. Experiments systematically remove or modify
various components in the framework, observing impacts on
final performance. The comprehensive results of our ablation
experiments are presented in Table III.

Constraint dimension ablation experiments separately re-
move syntactic, semantic, relevance, and boundary condition
constraints, observing impacts on generation quality. Results
show that removing any constraint dimension leads to per-
formance degradation, with semantic constraints having the
greatest impact. Removal results in 15% functional coverage
decrease and 18% defect detection rate decrease. Boundary
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TABLE III
ABLATION EXPERIMENT RESULTS COMPARISON ANALYSIS

Experimental Configuration Functional
Coverage

Defect Detection
Rate

Constraint
Satisfaction

Generation
Efficiency

Performance
Degradation

Complete Framework 0.847 0.763 0.892 0.721 –

Remove Syntactic Constraints 0.779 0.671 0.834 0.743 -8.0%

Remove Semantic Constraints 0.720 0.625 0.751 0.756 -15.0%

Remove Relevance Constraints 0.745 0.687 0.823 0.734 -12.0%

Remove Boundary Constraints 0.762 0.595 0.867 0.729 -22.0%

Remove Coverage Reward 0.758 0.724 0.885 0.682 -10.5%

Remove Effectiveness Reward 0.832 0.610 0.876 0.698 -20.0%

Remove Multi-agent Collaboration 0.798 0.718 0.873 0.635 -11.9%

condition constraint removal significantly impacts defect de-
tection capabilities, with decrease magnitudes reaching 22%.
These results validate the necessity and effectiveness of multi-
dimensional constraint design.

Reinforcement learning component ablation experiments
compare effects of different reward function designs. Remov-
ing coverage reward components results in significant diversity
decreases in generated test cases, with repetition rates in-
creasing by 35%. Removing effectiveness reward components
results in 20% defect detection rate decreases. Removing
constraint reward components results in constraint satisfaction
dropping to 0.71, with significant quality decreases. These
results prove the scientific validity and effectiveness of hi-
erarchical reward design.

Algorithm optimization strategy ablation experiments eval-
uate contributions of constraint-aware updates, multi-agent
collaboration, and other optimization strategies. Removing
constraint-aware updates results in 45% increases in constraint
violation rates and decreased training stability. Removing
multi-agent collaboration results in 30% convergence speed
decreases and some final performance declines. These results
demonstrate the important contributions of algorithm optimiza-
tion strategies to overall performance.

Parameter sensitivity analysis experiments study the impacts
of key parameters on performance. Changes in constraint
weight parameters significantly affect results. When semantic
constraint weights are too low, generated test case seman-
tic quality decreases; when boundary condition weights are
too high, excessive focus on extreme situations may neglect
regular functional testing. Learning rate parameter selection
is also crucial, with excessive learning rates causing training
instability and insufficient learning rates affecting convergence
speed.

D. Case Studies

To more intuitively demonstrate the framework’s practical
effectiveness, we select several typical cases for detailed anal-
ysis. In sentiment analysis tasks, our framework generates a
series of test cases containing complex emotional expressions,
successfully discovering model defects in handling sarcasm,

metaphor, and other indirect emotional expressions. For exam-
ple, the generated test case ”This movie is really ’wonderful’,
I fell asleep after watching it for five minutes” successfully
exposes the model’s inability to correctly identify sarcastic
semantics.

In machine translation tasks, the framework generates nu-
merous test cases containing professional terminology, slang
expressions, and culturally distinctive vocabulary, effectively
examining model translation accuracy and cultural adaptabil-
ity. A typical case involves generating sentences containing
Chinese idioms, testing whether models can correctly under-
stand and translate the deep meanings of idioms rather than
performing literal translations.

In question answering system testing, the framework gen-
erates complex questions requiring multi-step reasoning and
common sense judgment, successfully discovering model lim-
itations in logical reasoning. For example, the generated test
question ”If yesterday were tomorrow, what day would today
be?” tests model temporal logical reasoning capabilities, with
results showing most models perform poorly on such ques-
tions.

These case studies fully demonstrate the advantages of the
multi-dimensional constraint framework in generating chal-
lenging and targeted test cases. Generated test cases not
only meet various constraint requirements but also effectively
discover genuine model defects, providing valuable feedback
information for model improvement.

VII. DISCUSSION AND ANALYSIS

A. Framework Advantages and Innovation Points

The multi-dimensional constraint test case generation
framework proposed in this paper possesses multiple signifi-
cant advantages and innovation points. First, systematic multi-
dimensional constraint design provides comprehensive quality
assurance mechanisms for test case generation. Compared to
existing methods, our framework not only considers basic
syntactic and semantic requirements but also deeply considers
task relevance and boundary conditions, forming a complete
constraint system. This systematic design ensures generated
test cases meet high-quality requirements across all aspects.
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The combination of reinforcement learning and constraint
optimization represents another important innovation point of
this framework. Traditional test case generation methods often
employ heuristic rules or simple random search, struggling
to handle complex multi-dimensional constraint optimization
problems. Our framework learns optimal generation strategies
through reinforcement learning agents, capable of maximiz-
ing testing effectiveness while satisfying multi-dimensional
constraints. This approach possesses strong adaptability and
extensibility, automatically adjusting generation strategies ac-
cording to different task characteristics.

Hierarchical reward mechanism design effectively resolves
complex optimization objective balancing problems. By de-
composing complex test quality evaluation into multiple sub-
objectives and designing corresponding reward components,
our framework can simultaneously optimize multiple poten-
tially conflicting objectives. This design not only improves
learning efficiency but also ensures comprehensiveness and
balance of generation results.

Automated evaluation system construction provides scien-
tific foundations for objective test case quality evaluation. Tra-
ditional test case evaluation often relies on manual judgment,
presenting problems of strong subjectivity and low efficiency.
Our automated evaluation system achieves rapid, objective,
and repeatable quality evaluation through standardized metrics
and processes, providing strong support for test case genera-
tion method comparison and improvement.

B. Limitations and Challenges

Despite significant achievements, this framework still pos-
sesses some limitations and challenges requiring further res-
olution. First, constraint parameter setting requires domain
expert participation and tuning. Different tasks and application
scenarios may require different constraint weight configu-
rations. How to automatically determine optimal parameter
settings represents a problem worthy of in-depth research.
Although we provide parameter sensitivity analysis, practical
applications still require fine-tuning according to specific sit-
uations.

Computational complexity represents another consideration.
Reinforcement learning training processes require substantial
computational resources and time, particularly when handling
large-scale test case generation tasks. Although we improve
efficiency through parallel processing and experience reuse
technologies, computational costs remain higher compared to
simple generation methods. How to further improve genera-
tion efficiency while ensuring quality represents an important
future optimization direction.

Constraint conflict handling mechanisms require further
improvement. In certain complex scenarios, different dimen-
sional constraints may have fundamental conflicts, and existing
weight balancing mechanisms may be unable to find ideal
solutions. More intelligent conflict resolution strategies require
research, potentially including constraint relaxation and phased
optimization technologies.

Evaluation metric completeness and objectivity require con-
tinuous improvement. Although we design multi-dimensional
evaluation systems, test case quality evaluation remains a
complex problem. Particularly in subjective aspects such as
semantic quality and innovation, how to design more accurate
and comprehensive automated evaluation methods represents
a long-term challenge.

C. Application Prospects and Extension Directions

This framework possesses broad application prospects and
extension potential. In software testing, the framework can
extend to other types of AI system testing, such as com-
puter vision models and speech recognition systems. Through
adjusting constraint dimensions and evaluation metrics, the
framework can adapt to different types of AI system testing
requirements, providing unified solutions for AI quality assur-
ance.

In education and training, the framework can generate
teaching test questions and exercise materials automatically.
By setting corresponding educational constraints and learning
objectives, systems can generate practice questions with ap-
propriate difficulty and rich content, supporting personalized
learning and intelligent education. This application can not
only reduce teacher workloads but also provide more precise
and diverse teaching resources.

In security testing, the framework can generate adversarial
test cases to detect AI system security vulnerabilities and
fragilities. Through designing specific security constraints and
attack patterns, systems can generate test cases capable of
exposing AI system security problems, providing powerful
tools for AI security research and protection.

Technical extension directions include multi-modal test case
generation, online adaptive testing, and distributed testing in
federated learning environments. Multi-modal extensions can
handle combined testing scenarios of text, images, audio, and
other data types. Online adaptive testing can dynamically
adjust testing strategies according to problems discovered
during testing processes. Distributed testing can achieve large-
scale collaborative testing while protecting data privacy.

Additionally, the framework can deeply integrate with
Continuous Integration/Continuous Deployment (CI/CD) pro-
cesses, achieving automated testing and quality monitoring
for AI systems. Through tight integration with development
processes, the framework can provide strong quality assurance
support for rapid AI system iteration and reliable deployment.

VIII. CONCLUSION

This paper addresses key problems of complex test case
design and insufficient coverage in large language model func-
tional testing by proposing an innovative multi-dimensional
constraint-based test case generation and evaluation frame-
work. The framework systematically defines four key con-
straint dimensions - syntactic correctness, semantic consis-
tency, task relevance, and boundary conditions - providing
comprehensive quality assurance mechanisms for test case
generation.
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The deep integration of reinforcement learning and con-
straint optimization represents the core innovation of this
research. Through designing hierarchical reward functions and
constraint-aware policy update mechanisms, the framework
can maximize testing effectiveness while satisfying multi-
dimensional constraints. Experimental results fully validate
method effectiveness, achieving significant improvements of
42% and 28% in functional coverage and defect detection rates
respectively.

The constructed automated evaluation system provides ob-
jective and comprehensive evaluation standards for test case
quality. Through standardized metric systems and evaluation
processes, the framework can not only effectively evaluate
generated test case quality but also provide scientific foun-
dations for different method comparison and improvement.
Ablation experiments further prove the necessity and effec-
tiveness of each component, indicating directions for further
framework optimization.

This research provides systematic solutions for large lan-
guage model quality assurance, possessing important theoreti-
cal value and practical significance. With rapid AI technology
development and widespread applications, high-quality testing
methods will become key technologies for ensuring AI system
reliability and safety. This framework makes meaningful con-
tributions to this important field development and establishes
solid foundations for future related research.

IX. FUTURE RESEARCH DIRECTIONS

Based on the current research achievements and existing
limitations, future research should focus on several critical
directions to advance the field of large language model testing
and quality assurance.

As large language models evolve toward multimodal capa-
bilities, the framework must be extended to support combined
testing scenarios involving text, images, audio, and other
data types. This advancement requires redesigning constraint
dimensions and evaluation metric systems to accommodate
the complexity and interdependencies of multimodal inputs.
The challenge lies in developing unified constraint frameworks
that can effectively handle the semantic relationships across
different modalities while maintaining testing effectiveness
and coverage.

Research into adaptive parameter optimization mechanisms
holds substantial value for framework advancement. The cur-
rent framework requires manual tuning of constraint weight
parameters, which limits its practical applicability across di-
verse domains. Future research should explore meta-learning
and adaptive algorithm-based approaches for automatic pa-
rameter optimization, thereby enhancing the framework’s gen-
eralization capabilities across different tasks and application
domains. This development would significantly reduce the
expertise barrier for framework deployment and improve its
scalability in real-world applications.

The advancement of large-scale distributed testing tech-
nology will enable support for more complex application

scenarios. By integrating federated learning and edge com-
puting technologies, researchers can achieve collaborative
testing across institutions and geographical boundaries while
preserving data privacy and security. This approach addresses
the growing need for comprehensive testing in distributed AI
systems and enables broader participation in quality assurance
efforts without compromising sensitive data protection require-
ments.
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