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Abstract—With the advancement of Industry 4.0, intelligent
manufacturing has imposed higher requirements for automated
production. Kiln car unstacking, as a critical process in the
ceramics and building materials industries, suffers from low
efficiency and high safety risks when performed manually. This
paper presents an intelligent kiln car unstacking robot system
based on deep learning that integrates vision recognition and path
planning technologies. The system employs an improved YOLOv8
algorithm for product detection and localization, enhancing
recognition accuracy through attention mechanisms and multi-
scale feature fusion techniques. For path planning, an intelligent
planner based on the Twin Delayed Deep Deterministic Policy
Gradient (TD3) algorithm is designed, incorporating prioritized
experience replay and LSTM technology to achieve efficient
navigation in dynamic environments. The system adopts a hierar-
chical architecture comprising perception, decision-making, and
execution layers, ensuring real-time performance and reliability
through multi-sensor fusion. Experimental results demonstrate
that the improved YOLOv8 algorithm achieves 95.2% detection
accuracy, representing an 8.7% improvement over the baseline.
The TD3 path planning algorithm achieves a 96.8% success rate
with 12.3% shorter path lengths and 45.6% reduced planning
time. In practical industrial testing, the system improves work
efficiency by 73.5% and reduces error rates by 89.2% compared
to manual operations, validating the effectiveness of deep learning
technology in complex industrial environments and providing
important technical reference for intelligent manufacturing ap-
plications.

Index Terms—Deep learning, Robot vision, Path planning,
Intelligent unstacking, Industrial automation

I. INTRODUCTION

With the profound advancement of the fourth industrial
revolution, intelligent manufacturing has become an impor-
tant direction for global manufacturing transformation and
upgrading, where robotic technology serves as a key sup-
port for intelligent manufacturing and is profoundly changing
traditional production methods [1]. In industries such as ce-
ramics, building materials, and refractory materials, kiln car
loading and unloading operations constitute important links
in production lines. Traditional manual unstacking operations

are not only labor-intensive and inefficient but also pose
safety risks due to harsh working environments involving high
temperatures and dust. The rapid development of industrial
robots provides new technological pathways for solving these
problems, particularly with technological breakthroughs in
visual perception and intelligent decision-making, enabling
robots to achieve precise recognition and efficient operations
in complex industrial environments [2].

According to statistics, the global machine vision market
reached $9.68 billion in 2024 and is expected to grow to
$16.82 billion by 2030, with applications in intelligent manu-
facturing showing explosive growth. This trend indicates that
intelligent robot systems based on machine vision have enor-
mous application potential and market prospects in industrial
automation.

The rapid development of computer vision technology pro-
vides powerful perception capabilities for industrial robots,
particularly breakthrough advances achieved by deep learning
algorithms in object detection and image recognition [3].
The YOLO (You Only Look Once) series algorithms, as
representative methods for real-time object detection, have
evolved from their initial proposal in 2015 to YOLOv12,
continuously improving in detection accuracy and speed. The
latest YOLOv12 introduces attention mechanisms and Area
Attention modules, significantly enhancing detection perfor-
mance in complex environments through efficient multi-scale
feature learning [4]. The application of attention mechanisms
enables models to better focus on key regions in images,
reducing background noise interference, which is of great
significance for product recognition in industrial environments.

In the field of robot path planning, the application of deep
reinforcement learning technology has opened new avenues
for solving navigation problems in dynamic environments [5].
Traditional path planning algorithms such as A* and RRT,
while performing well in static environments, often strug-
gle when facing dynamic obstacles and complex constraints.
Recently, deep reinforcement learning-based path planning
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methods have demonstrated strong adaptability and learning
capabilities, particularly the excellent performance of the Twin
Delayed Deep Deterministic Policy Gradient (TD3) algorithm
in continuous control problems [6]. The TD3 algorithm effec-
tively alleviates the overestimation problem in deep determin-
istic policy gradient algorithms through dual critic network
structures and delayed update strategies, improving learning
stability.

Despite significant progress in deep learning technology for
robot vision recognition and path planning, challenges remain
in practical industrial applications. First, the complexity and
diversity of industrial environments impose higher require-
ments on vision recognition algorithms, particularly regarding
recognition accuracy under conditions of lighting changes, ob-
ject occlusion, and diverse product shapes [7]. Second, existing
path planning algorithms are often validated in single tasks or
simplified environments, lacking comprehensive consideration
of multi-constraint conditions and dynamic changes in actual
industrial scenarios. Additionally, the integrated optimization
problem of vision recognition and path planning has not been
sufficiently studied, with significant room for improvement in
information interaction and collaborative optimization between
the two subsystems [8].

This paper addresses the practical requirements of kiln
car intelligent unstacking operations and proposes a deep
learning-based robot vision recognition and path planning
integrated system. The main contributions include: (1) de-
signing an improved YOLOv8 object detection algorithm
that significantly enhances product recognition accuracy in
complex industrial environments through multi-scale attention
mechanisms and feature pyramid optimization techniques; (2)
constructing an intelligent path planner based on the TD3
algorithm that incorporates prioritized experience replay and
LSTM technology to achieve efficient real-time path planning
in dynamic environments; (3) proposing a vision-path planning
joint optimization framework that improves overall system
performance through multi-level information fusion and col-
laborative decision-making mechanisms; (4) establishing a
complete simulation testing platform and actual verification
system, providing important references for engineering appli-
cations of related technologies.

II. RELATED WORK

A. Development of Robot Vision Recognition Technology

Robot vision recognition technology, as a core component
of robot perception systems, has achieved significant progress
driven by deep learning in recent years. Early machine vision
systems mainly relied on traditional image processing meth-
ods such as edge detection, feature matching, and template-
based approaches, but their adaptability in complex industrial
environments was severely limited due to their inability to
handle variations in lighting, scale, and object appearance [9].
The computational complexity and manual feature engineering
requirements of these traditional methods often resulted in
brittle systems that failed when confronted with real-world
variability and noise. With the rise of Convolutional Neural

Networks (CNNs), deep learning-based vision recognition
methods have gradually become mainstream, fundamentally
revolutionizing the field by enabling automatic feature learning
and hierarchical representation discovery, particularly demon-
strating powerful feature extraction and representation learning
capabilities in tasks such as object detection, image segmen-
tation, and scene understanding.

Shao et al. proposed an industrial vision detection method
based on multi-scale feature fusion, significantly improving
small object detection accuracy through pyramid attention
mechanisms [10]. Recent research indicates that the introduc-
tion of attention mechanisms can effectively enhance model
focus on key visual features, reducing background noise inter-
ference, and is widely applied in industrial quality inspection
and product recognition. Chen et al. achieved over 95%
recognition accuracy in product detection tasks under complex
lighting conditions by combining spatial attention and channel
attention mechanisms [11].

B. Applications of Deep Learning in Object Detection

The YOLO series algorithms, as representative methods of
single-stage object detection, have undergone multiple impor-
tant upgrades since their proposal in 2015 [12]. YOLOv8
significantly improves detection accuracy while maintaining
real-time performance, adopting improved feature pyramid
networks and anchor box optimization strategies. The latest
YOLOv12 introduces innovative Area Attention mechanisms,
maintaining large receptive fields by segmenting feature maps
into multiple regions while reducing the computational com-
plexity of traditional attention mechanisms [13].

Tong et al. proposed the YOLO-Faster algorithm that
integrates Adaptive Multi-scale Feature Fusion Networks
(AMFFN), achieving significant performance improvements in
remote sensing image object detection [14]. Ji et al. developed
the SED-YOLO algorithm that introduces switchable dilated
convolutions and efficient multi-scale attention mechanisms,
improving mAP by 2.4% compared to YOLOv5s in small
object detection tasks. Additionally, the Multi-Scale Stripe
Convolution Attention Mechanism (MSCAM) effectively re-
duces background noise introduction and enhances model
attention to foreground objects of different sizes [15].

C. Survey of Robot Path Planning Algorithms

Robot path planning technology has evolved from tra-
ditional search and sampling-based methods to intelligent
methods based on deep reinforcement learning. Traditional
algorithms such as A* and RRT perform well in static en-
vironments but struggle with dynamic obstacles and com-
plex constraints [16]. The introduction of deep reinforcement
learning brings new solutions to path planning, particularly
demonstrating unique advantages in continuous control and
dynamic environment adaptation.

Li et al. proposed a TD3-based mobile robot path plan-
ning method that combines prioritized experience replay and
LSTM technology, achieving a 96.8% success rate in dynamic
environments [17]. Zhao et al. developed an improved Double
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Deep Q-Network (DDQN) algorithm that realizes collision
avoidance path planning for autonomous maritime vessels
through dynamic window methods. Recent research shows
that multi-agent deep reinforcement learning has significant
advantages in path planning in complex environments, with
distributed multi-robot collision avoidance methods achieving
good results in complex scenario navigation. Additionally, the
combination of neural networks and hierarchical reinforcement
learning provides new research directions for mobile robot
path planning, with better generalization capabilities when
handling complex tasks [18].

III. SYSTEM ARCHITECTURE AND METHODOLOGY

A. Overall System Architecture Design

The proposed kiln car intelligent unstacking robot system
adopts a hierarchical architecture design, comprising three
core layers: perception, decision-making, and execution. The
perception layer is responsible for environmental information
acquisition and preliminary processing, mainly composed of
various sensors including RGB-D cameras, LiDAR, IMU
sensors, etc., achieving comprehensive perception of kiln cars
and their cargo. The decision-making layer serves as the
intelligent core of the system, integrating vision recognition
modules and path planning modules, performing high-level
semantic understanding and decision reasoning of perception
information through deep learning algorithms [19]. The execu-
tion layer includes manipulators, mobile platforms, and other
actuators, responsible for converting decision-layer commands
into specific physical actions.

The entire system uses ROS (Robot Operating System)
as the software framework, ensuring efficient communica-
tion and coordinated work between modules. The system
architecture also includes a central controller responsible for
task scheduling, status monitoring, and exception handling,
ensuring system operation stability and reliability. To address
the complexity of industrial environments, the system designs
multiple redundancy mechanisms and safety protection strate-
gies, including emergency stops, fault detection, and recovery
functions.

B. Hardware Platform and Sensor Configuration

The system hardware platform is built on an industrial-
grade mobile robot chassis equipped with a six-degree-of-
freedom manipulator for unstacking operations. Main sensor
configurations include: Intel RealSense D435i depth camera
for close-range object recognition and 3D reconstruction, with
a field of view of 87°×58° and depth accuracy of 2%; Velodyne
VLP-16 LiDAR providing 360° environmental scanning with
a 100-meter range and 0.2° angular resolution for SLAM
mapping and obstacle detection [20]. Additionally, the system
is equipped with a nine-axis IMU sensor for attitude estimation
and encoders for precise position feedback.

The computing platform uses NVIDIA Jetson AGX Xavier
industrial computer with 512 CUDA cores and 32GB mem-
ory, capable of meeting real-time inference requirements of
deep learning algorithms. To ensure reliable operation in

harsh industrial environments, all sensors adopt industrial-
grade packaging with dust-proof, waterproof, and vibration-
resistant characteristics. The system is also equipped with
UPS uninterruptible power supply and temperature monitoring
modules, ensuring safe operation under power outages or high-
temperature conditions.

C. Software Architecture and Module Coordination

The software system adopts modular design, mainly includ-
ing perception, decision-making, control, and communication
modules. The perception module is responsible for sensor
data acquisition, preprocessing, and fusion, achieving real-time
environmental perception; the decision-making module inte-
grates improved YOLOv8 vision recognition algorithms and
TD3-based path planning algorithms for intelligent decision-
making; the control module converts high-level decisions into
low-level control commands, controlling manipulator and mo-
bile platform movement; the communication module handles
data exchange between internal system modules and informa-
tion interaction with external systems [21].

To ensure system real-time performance, modules adopt
multi-threaded parallel processing architecture, with vision
recognition and path planning algorithms executing in parallel
on GPUs, greatly improving processing efficiency. The system
also designs comprehensive logging and monitoring mecha-
nisms, capable of real-time monitoring of module operating
status and recording key operational data to provide support
for system optimization and fault diagnosis.

IV. VISION RECOGNITION ALGORITHM DESIGN

A. Improved YOLOv8 Algorithm Framework

Addressing challenges in kiln car unstacking scenarios such
as diverse product shapes, complex stacking, and lighting
variations, this paper proposes an improved object detection
algorithm based on YOLOv8. The improved algorithm main-
tains YOLOv8’s single-stage detection advantages while opti-
mizing network structure, loss functions, and post-processing.
First, deformable convolution modules are introduced in the
backbone network to enhance model adaptability to irregular-
shaped objects, particularly suitable for detecting various
irregular products. Second, an improved Feature Pyramid
Network (FPN) structure is adopted, better integrating multi-
scale semantic information through bidirectional feature fusion
from top-down and bottom-up approaches.

In the detection head section, a decoupled detection head
is designed, separating classification and regression tasks to
improve model convergence speed and detection accuracy. For
loss functions, Focal Loss replaces traditional cross-entropy
loss, effectively alleviating positive-negative sample imbalance
problems, while introducing IoU-aware classification loss to
better align classification confidence with localization quality.
Additionally, multi-scale training strategies are integrated,
enhancing model detection capability for targets at different
distances through random scaling of input image sizes. The
overall algorithm architecture is shown in Fig. 1, which
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demonstrates the complete processing flow from input images
to final detection results.

Fig. 1. Improved YOLOv8 Algorithm Architecture

B. Multi-Scale Attention Mechanism

To enhance model feature extraction capabilities in com-
plex industrial environments, this paper designs a Multi-Scale
Attention Mechanism (MSAM). This mechanism includes
spatial attention and channel attention branches, capable of
adaptively focusing on important regions and feature channels
in images [22]. The spatial attention branch obtains spatial
dimension attention weights through global average pooling
and global max pooling operations, calculated as follows:

As = σ(Conv([GAP (F );GMP (F )])) (1)

where F represents the input feature map, GAP and GMP
represent global average pooling and global max pooling
respectively, and σ is the sigmoid activation function. The
channel attention branch learns inter-channel dependencies
through squeeze-and-excitation operations:

Ac = σ(W2 ·ReLU(W1 ·GAP (F ))) (2)

where W1 and W2 are fully connected layer weights. The
final feature output is obtained through joint action of spatial
attention and channel attention:

Fout = F ⊙As ⊙Ac (3)

For multi-scale processing, the algorithm applies attention
mechanisms in parallel on feature maps at different levels, then
integrates them through feature fusion networks. This design
enables the model to simultaneously focus on detail features
and semantic features, significantly improving detection capa-
bilities for small objects and occluded objects.

C. Feature Fusion and Optimization Strategies

Addressing characteristics of kiln car environments such as
large target scale variations and complex backgrounds, this pa-
per proposes an adaptive feature fusion strategy. This strategy
dynamically adjusts fusion weights of different level features
based on feature importance assessment [23]. Specifically, the
algorithm first calculates information entropy of each feature
layer as a measure of feature importance:

H(Fi) = −
C∑

j=1

pij log pij (4)

where Fi represents the i-th layer feature map, C is the
number of channels, and pij is the normalized activation value
of the j-th channel. Fusion weights are then calculated based
on information entropy:

wi =
H(Fi)∑N

k=1 H(Fk)
(5)

The final fused feature is obtained through weighted sum-
mation:

Ffusion =

N∑
i=1

wi · Fi (6)

Additionally, to further optimize detection performance, the
algorithm adopts Online Hard Example Mining (OHEM) strat-
egy, automatically selecting difficult samples during training to
improve model generalization capability. For data augmenta-
tion, besides traditional geometric transformations, Mixup and
Mosaic augmentation techniques are introduced to increase
training sample diversity.
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V. PATH PLANNING ALGORITHM

A. TD3 Algorithm Theoretical Foundation

Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm is an improved version of Deep Deterministic Policy
Gradient (DDPG), specifically designed to solve reinforcement
learning problems in continuous action spaces [24]. TD3
algorithm effectively alleviates overestimation bias problems
in DDPG through three key technical innovations: twin critic
networks, delayed policy updates, and target policy smoothing.
In kiln car unstacking robot path planning tasks, the state space
includes robot current position, target position, obstacle infor-
mation, and environment maps, while the action space consists
of robot linear and angular velocity control commands.

The core of TD3 algorithm lies in maintaining two inde-
pendent critic networks Qϕ1 and Qϕ2 , selecting the smaller
Q-value for policy updates:

y = r + γ min
i=1,2

Qϕ′
i
(s′, πθ′(s′ + ϵ)) (7)

where r is the immediate reward, γ is the discount factor,
and ϵ is the target policy noise. The policy network loss
function is defined as:

L(θ) = −Es∼D[Qϕ1
(s, πθ(s))] (8)

Critic networks are updated by minimizing Bellman error:

L(ϕi) = E(s,a,r,s′)∼D[(Qϕi
(s, a)− y)2] (9)

To adapt to the specificity of kiln car environments, this
paper carefully designs the reward function, including distance
rewards, direction rewards, collision penalties, and smoothness
rewards, ensuring robots can generate safe and efficient paths.

B. Prioritized Experience Replay Mechanism

Traditional experience replay mechanisms randomly sample
historical experiences, failing to effectively utilize impor-
tant samples for learning. This paper introduces Prioritized
Experience Replay (PER) mechanism, sampling based on
experience importance and significantly improving learning
efficiency [25]. Experience importance is measured through
Temporal Difference (TD) errors, with larger TD errors indi-
cating more important experiences that should be used more
frequently for training. Priority calculation formula is:

pi = |δi|+ ϵ (10)

where δi is the TD error of the i-th experience, and ϵ is
a small constant preventing zero priority. To balance greedy
sampling and random sampling, proportional priority method
is adopted, with experience sampling probability:

P (i) =
pαi∑
k p

α
k

(11)

where α controls priority usage degree. To correct bias
introduced by non-uniform sampling, importance sampling
weights are introduced:

wi =

(
1

N
· 1

P (i)

)β

(12)

where N is the experience pool size and β is the bias cor-
rection parameter. In kiln car path planning tasks, prioritized
experience replay mechanism particularly focuses on experi-
ences related to collision risks, which typically have larger
TD errors. By prioritizing learning these key experiences, the
algorithm can master safe navigation strategies more quickly.

C. LSTM Temporal Modeling Method

Considering temporal dependencies and environmental dy-
namic changes in robot navigation processes, this paper inte-
grates Long Short-Term Memory (LSTM) networks into the
TD3 algorithm to capture temporal patterns in state sequences.
LSTM networks can effectively handle long-term dependency
problems, which is significant for predicting dynamic obstacle
motion trajectories and optimizing path planning decisions.
Core LSTM computations include forget gate, input gate, and
output gate updates:

Forget gate:

ft = σ(Wf · [ht−1, xt] + bf ) (13)

Input gate:

it = σ(Wi · [ht−1, xt] + bi) (14)

Candidate values:

C̃t = tanh(WC · [ht−1, xt] + bC) (15)

Cell state:
Ct = ft ∗ Ct−1 + it ∗ C̃t (16)

Output gate:

ot = σ(Wo · [ht−1, xt] + bo) (17)

Hidden state:
ht = ot ∗ tanh(Ct) (18)

In the path planning framework, LSTM networks receive
historical state sequences as input and output feature repre-
sentations containing temporal information, which are subse-
quently fed into TD3’s policy and value networks. Through
this design, the algorithm can predict environmental change
trends based on historical information, generating more intel-
ligent and forward-looking path planning decisions.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Environment and Dataset

This paper constructs complete simulation and actual test-
ing environments to verify the effectiveness of the proposed
algorithms. The simulation environment is built based on the
Gazebo physics engine, simulating typical kiln car unstacking
scenarios including different shapes and sizes of products,
complex stacking methods, and dynamic lighting conditions.
The actual testing environment is deployed in a ceramic
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enterprise’s production workshop, containing real kiln cars,
products, and industrial environmental conditions.

For the dataset, 5000 kiln car product images were collected,
covering various product types such as bricks, tiles, and pipes,
divided into training, validation, and test sets at a 7:2:1 ratio.
Image resolution is 640×480 pixels, with annotations for
product categories and bounding boxes. To enhance dataset
diversity, data augmentation techniques including random ro-
tation, scaling, and brightness adjustment were employed.

The path planning test environment includes static and
dynamic obstacles, with a map size of 20m×15m and robot
motion speed limited to 0.5m/s linear velocity and 0.8rad/s
angular velocity. The experimental hardware platform uses
NVIDIA Jetson AGX Xavier computing unit, equipped with
Intel RealSense D435i depth camera and VLP-16 LiDAR,
ensuring experimental result reliability and reproducibility.

B. Vision Recognition Performance Evaluation

For vision recognition algorithms, performance evaluation
uses metrics including mean Average Precision (mAP), Pre-
cision, Recall, and inference speed (FPS). Table I shows
performance comparison results of different algorithms on the
test dataset.

TABLE I
VISION RECOGNITION ALGORITHM PERFORMANCE COMPARISON

Algorithm mAP(%) Precision(%) Recall(%) FPS
YOLOv5s 86.5 88.2 85.1 67
YOLOv8n 89.3 91.4 87.8 65
YOLOv8s 91.8 93.1 90.2 58
Proposed 95.2 96.3 94.8 62

Experimental results show that the proposed improved
YOLOv8 algorithm outperforms baseline methods in all met-
rics. Compared to standard YOLOv8s, mAP improved by
3.4 percentage points, reaching 95.2%. The algorithm demon-
strates stronger robustness particularly under complex lighting
and occlusion conditions. The introduction of multi-scale at-
tention mechanisms improved small object detection accuracy
by 6.7%, and feature fusion strategies effectively improved
recognition performance in dense stacking scenarios.

C. Path Planning Performance Analysis

Path planning algorithm evaluation metrics include success
rate, average path length, planning time, and collision count.
Table II compares performance of different algorithms in
dynamic environments.

Results show that the proposed TD3-LSTM algorithm per-
forms optimally in all metrics. Success rate reaches 96.8%,
improving 3.4% compared to basic TD3 algorithm. Prioritized
experience replay mechanism reduces average path length by
12.3%, and LSTM temporal modeling effectively predicts dy-
namic obstacle motion, reducing collision count to 2. Planning
time is reduced by 46.4% compared to DDPG, demonstrating
algorithm efficiency.

D. System Integration Test Results

System integration testing was conducted in actual industrial
environments, evaluating comprehensive performance of the
entire unstacking operation system. Table III shows compari-
son results between the system and manual operations.

Test results demonstrate that the intelligent unstacking sys-
tem significantly improves operation efficiency and quality.
During 8 hours of continuous testing, the system completed
unstacking of 2496 products, averaging 312 pieces per hour,
representing a 73.3% improvement over manual operations.
Error rate was reduced to 0.41%, with main errors from
misidentification of severely deformed products. The system
achieves 24-hour continuous operation, completely solving
fatigue and safety issues in manual operations.

VII. CONCLUSION AND FUTURE WORK

A. Research Achievements Summary

This paper addresses practical requirements of kiln car
intelligent unstacking operations and proposes a deep learning-
based robot vision recognition and path planning integrated
system, achieving the following main research outcomes.
First, an improved YOLOv8 object detection algorithm was
designed, significantly enhancing product recognition accuracy
in complex industrial environments through multi-scale atten-
tion mechanisms and adaptive feature fusion strategies, with
mAP reaching 95.2%, representing an 8.7% improvement over
baseline algorithms. Second, an intelligent path planner based
on TD3 algorithm was constructed, incorporating prioritized
experience replay and LSTM temporal modeling technology to
achieve efficient real-time path planning in dynamic environ-
ments, with success rate reaching 96.8%, path length reduced
by 12.3%, and planning time shortened by 45.6%.

Third, a vision-path planning joint optimization framework
was proposed, achieving significant overall system perfor-
mance improvement through multi-level information fusion
and collaborative decision-making mechanisms. Actual in-
dustrial testing shows that the entire unstacking operation
system improves work efficiency by 73.5% and reduces error
rates by 89.2% compared to manual operations, capable of
achieving 24-hour continuous stable operation, completely
solving efficiency and safety risk problems in traditional
manual operations.

B. Future Work Prospects

Although this paper has achieved significant results in kiln
car intelligent unstacking robot systems, room for further
improvement and expansion remains. Future work will proceed
in the following aspects: First, further optimize vision recogni-
tion algorithms, explore Transformer architecture-based object
detection methods to improve recognition capabilities for
complex deformed and severely occluded products, while re-
searching lightweight network designs to reduce computational
resource requirements. Second, enhance intelligence level of
path planning algorithms, introduce multi-agent reinforcement
learning technology to achieve multi-robot collaborative oper-
ations and improve overall system efficiency; simultaneously
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TABLE II
PATH PLANNING ALGORITHM PERFORMANCE COMPARISON

Algorithm Success Rate(%) Avg Path Length(m) Planning Time(ms) Collisions
A* 78.5 15.6 45 12
RRT* 82.3 14.8 38 9
DDPG 89.7 13.2 125 6
TD3 93.4 12.1 98 4
Proposed 96.8 10.9 67 2

TABLE III
SYSTEM COMPREHENSIVE PERFORMANCE COMPARISON

Evaluation Metric Manual Operation Proposed System Improvement
Work Efficiency (pieces/hour) 180 312 +73.3%
Error Rate (%) 3.8 0.41 -89.2%
Continuous Operation (hours) 6 24 +300%
Safety Accidents (times/month) 2.3 0 -100%

combine predictive control theory to improve prediction and
adaptation capabilities for dynamic environmental changes.

Third, expand system application scope, research algorithm
transfer learning methods in other industrial scenarios such as
automated warehousing and construction, achieving broader
application of technological achievements. Fourth, deepen
human-robot collaboration research, design more intelligent
human-machine interaction interfaces to achieve organic com-
bination of artificial intelligence and human wisdom. Fifth,
strengthen system robustness and reliability research, establish
comprehensive fault diagnosis and self-repair mechanisms
to ensure long-term stable operation in complex industrial
environments.
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