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Abstract—During software evolution, frequent code modifica-
tions often lead to inconsistencies between comments and actual
code logic, creating technical debt and increasing maintenance
costs. Existing comment consistency detection methods primarily
rely on static analysis and lack systematic analysis of code evo-
lution history, making it difficult to accurately identify outdated
comment issues caused by code changes. This paper proposes a
comment consistency detection algorithm based on code change
history that identifies potential inconsistencies where code has
been modified but comments remain unchanged by analyzing
commit records in version control systems. The algorithm first
constructs a code-comment association graph, establishing map-
ping relationships between functions, classes, variables, and their
corresponding comments. Next, it detects the semantic impact
scope of code changes using differential algorithms to determine
whether related comments remain valid. It then employs natural
language processing techniques to calculate semantic similarity
between comment content and modified code. Finally, it combines
factors such as change frequency and modification complexity to
compute consistency risk scores. Validation on five large-scale
open-source projects demonstrates that the algorithm can accu-
rately identify 89.2% of comment inconsistency issues with a false
positive rate of only 5.9% and a recall rate of 91.9 %, significantly
outperforming existing baseline methods and providing effective
technical support for automated code quality management.

Index Terms—Code comment consistency, Software evolution,
Version control analysis, Natural language processing, Technical
debt management

I. INTRODUCTION

Code comments, as an essential component of software
documentation, play a crucial role in program comprehension
and developer collaboration [1]. High-quality comments can
significantly reduce program understanding time, improve de-
velopment efficiency, and effectively reduce the probability
of introducing software defects [2]. However, during the
continuous evolution of software systems, developers often
neglect to synchronously update corresponding comments
when modifying code, leading to semantic inconsistency issues
between code and comments. This inconsistency not only
misleads subsequent developers and increases code compre-
hension difficulty but may also introduce potential software
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defects, accounting for 15-25% of software maintenance costs
131, [4).

Existing comment consistency detection methods primarily
rely on static analysis and text matching techniques, iden-
tifying potential inconsistency issues by analyzing textual
features of code and comments [5]], [[6. However, most of
these methods adopt static analysis strategies, considering only
the current version’s code state and lacking in-depth analysis
of software evolution history. This limitation makes existing
methods unable to accurately capture outdated comment issues
caused by code changes, particularly when dealing with large-
scale, long-term software projects [7]]. Version control systems
record the complete evolution history of software development
processes. By analyzing these historical data, the impact of
code modifications on comment validity can be more accu-
rately identified [8].

Addressing the limitations of existing methods, this paper
proposes a comment consistency detection algorithm based on
code change history. The algorithm analyzes commit records in
version control systems, constructs code-comment association
graphs, detects semantic impact scope of code changes using
differential algorithms, integrates natural language processing
techniques to evaluate semantic consistency, and establishes
multi-dimensional risk scoring mechanisms. The main con-
tributions of this paper include: a code-comment associa-
tion graph construction algorithm, a change impact analysis
method based on syntax tree differencing, a comment-code
semantic consistency evaluation model, and a comprehensive
risk scoring mechanism. Experimental results show that the
algorithm achieves 89.2% accuracy in identifying comment
inconsistency issues with a false positive rate of only 5.9%,
providing effective technical support for automated code qual-
ity management.

II. RELATED WORK

A. Code Comment Quality Assessment

Code comment quality assessment is an important research
direction in software engineering. Early research mainly fo-
cused on rule-based methods, evaluating comment quality
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through static indicators such as comment length and coverage.
Rani et al. conducted a systematic literature review of code
comment quality assessment methods over the past decade,
summarizing various evaluation methods based on text anal-
ysis, machine learning, and deep learning [9]. While these
methods can identify low-quality comments to some extent,
most lack in-depth analysis of semantic consistency between
comments and code. In recent years, with the development
of natural language processing technology, researchers have
begun exploring comment quality assessment methods based
on semantic understanding, determining comment accuracy
and completeness by calculating semantic similarity between
comments and code. In recent years, with the development
of natural language processing technology, researchers have
begun exploring comment quality assessment methods based
on semantic understanding, determining comment accuracy
and completeness by calculating semantic similarity between
comments and code. Xu et al. proposed a code comment
inconsistency detection method based on confidence learning,
which improves detection accuracy by modeling uncertainty
in the detection process [10].

B. Software Evolution and Change Analysis

Software evolution analysis is fundamental to understanding
the impact of code changes on comments. Chen et al. studied
the impact of change granularity in refactoring detection,
proposing methods for analyzing code change patterns across
multiple commits [[11]]. Degiovanni et al. proposed specifica-
tion reasoning methods for evolving systems, understanding
the semantic impact of code changes by analyzing commit-
related specifications [12]. These studies provide theoretical
foundations for analyzing the impact of code changes on
comment validity. Molnar and Motogna conducted exploratory
research on technical debt in open-source software lifecycles,
finding that documentation debt is an important component of
technical debt during code evolution [13]. However, existing
software evolution analysis methods mainly focus on changes
in code structure and functionality, with relatively little atten-
tion to comment evolution.

C. Natural Language Processing Applications in Software
Engineering

Natural language processing technology applications in soft-
ware engineering are increasingly widespread. Zhang et al.
systematically reviewed the applications of language models
in code processing, covering multiple aspects including code
generation, code understanding, and code documentation gen-
eration [14]. Khurana et al. summarized recent advances in
natural language processing, particularly deep learning meth-
ods’ applications in text understanding and semantic analysis
[15]. These technologies provide important technical support
for achieving semantic consistency detection between code
and comments. However, applying natural language processing
technology to comment consistency detection still faces many
challenges, including handling domain-specific terminology
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in code, integrating code structural information, and cross-
language and cross-project generalization capabilities.

D. Technical Debt Management

Technical debt management has become a hot research
direction in software engineering. Leite et al. conducted sys-
tematic mapping research on technical debt management in
agile software development, finding that documentation debt is
an important type of technical debt [[16]]. Borg emphasized the
importance of explicitly specifying technical debt requirements
in requirement specifications [17]. Tornhill and Borg revealed
the actual business impact of code quality through quantitative
research on 39 proprietary production codebases [18]]. These
studies indicate that comment inconsistency issues, as impor-
tant manifestations of documentation debt, significantly impact
software quality and maintenance costs. However, existing
technical debt management methods mainly focus on code-
level debt, still lacking effective technical means for automated
detection and management of comment debt. The development
of automated software testing technology also provides new
insights for comment consistency detection [[19].

Although existing research has made important progress
in various related fields, there are still obvious deficiencies
in comment consistency detection based on code change
history. Most methods adopt static analysis strategies, lacking
systematic utilization of software evolution history, making
it difficult to accurately identify outdated comment issues
caused by code changes. The method proposed in this paper
provides new technical approaches to solving this problem
by deeply analyzing version control history and combining
natural language processing technology.

III. COMMENT CONSISTENCY DETECTION ALGORITHM
BASED ON CODE CHANGE HISTORY

A. Overall Algorithm Framework

The comment consistency detection algorithm based on
code change history proposed in this paper adopts a layered
processing architecture, mainly including four core modules:
code-comment association graph construction module, code
change semantic impact analysis module, comment-code se-
mantic consistency evaluation module, and comprehensive risk
scoring module. The overall workflow of the algorithm is
shown in Figure [T]

The algorithm first extracts commit history data from ver-
sion control systems and constructs association relationship
graphs between code elements and comments. Subsequently,
it identifies the semantic impact scope of code changes through
abstract syntax tree differential analysis, evaluates seman-
tic consistency between comments and code using natural
language processing technology, and finally combines multi-
dimensional factors to calculate risk scores and output detec-
tion results [20].

B. Code-Comment Association Graph Construction

The code-comment association graph is the core data struc-
ture of the algorithm, used to establish precise mapping rela-
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Fig. 1. Architecture diagram of comment consistency detection algorithm
based on code change history

tionships between code elements and their corresponding com-
ments. Let the code file set be F' = {f1, fa,..., fn}, where
each file f; contains code element set E; = {e1,ea,...,em}
and comment set C; = {c1,ca,...,Ck}.
Define association graph G = (V, E, W), where:
o V = V.UV, represents the node set, V. for comment
nodes, V, for code element nodes
o E C V, x V, represents the edge set, connecting com-
ments with related code elements
e W : E — [0,1] represents the association weight
function

The association weight calculation formula is:
W(c;,ej) = o - simgpagiar (¢4, €5)+
6 . Sim]exica](ci7 6j)+

v Slmslruclural(cia 647‘)

(1

where o + 5 + v = 1, simgpia represents spatial position
similarity, simjexjcy represents lexical similarity, and Simgyyctyral
represents structural similarity [21]].

C. Code Change Semantic Impact Analysis

Abstract syntax tree (AST) differential analysis is used to
identify the impact of code changes on comment validity. For
two consecutive versions v; and vy, construct corresponding
ASTs as T} and Ty, respectively.

Define change operation
{INSERT, DELETE, UPDATE, MOVE},
change sequence as:

A =
represent

set
and

Changes(T;, Ti11) = {(op;, node;, context;)|op; € A} (2)
Semantic impact scope calculation adopts recursive propa-

gation algorithm:

c€Children(n)

Impact(n) = DirectImpact(n) U Impact(c)

3)
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where Directlmpact(n) represents the direct impact of node
n, and Impact(c) represents the impact propagated by child
nodes [22].

D. Comment-Code Semantic Consistency Evaluation

Pre-trained language models are used to calculate semantic
similarity between comments and code. Code segment Scode
and comment text Scomment are respectively encoded as vector
representations:

Vcode = EnCOdercode(scode) 4)
Ucommem = EnCOderCOmant(SCOmment) (5)
The semantic consistency score calculation formula is:
. 17code : 17comment
COHSIStenCy(Scodm Scomment) (6)

B ||ﬁcode|| : ||ﬁcomment||

To handle code-specific identifiers and structural informa-
tion, a hybrid encoding strategy is adopted, combining code
syntactic features and natural language features [23].

E. Comprehensive Risk Scoring Mechanism

Comprehensively considering multi-dimensional factors
such as change frequency, modification complexity, and time
intervals, a comment consistency risk scoring model is estab-
lished. Let the risk score of comment c be:

Risk(¢) = w; - ChangeFreq(c)+
wo - ModComplexity(c)+
" (N

ws - TimeDecay(c
wy - (1 — Consistency(c))

where:

t,
« ChangeFreq(c) = 7™ represents change frequency
otal

o ModComplexity(c) represents modification complexity,
calculated based on AST node change count

o TimeDecay(c) = e~ "2t represents time decay factor

o Weights w; are learned from training data

When the risk score exceeds the preset threshold 6, it is
determined as a comment inconsistency issue:

1, Risk(c) >0

0, otherwise

Inconsistent(c) = (8)

This scoring mechanism can effectively identify outdated
comment issues caused by code evolution and prioritize them
according to risk levels [24]. The algorithm’s time complexity
is O(n - m -logk), where n is the number of commits, m is
the average number of files, and k is the average number of
comments, demonstrating good scalability.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

To validate the effectiveness of the proposed algorithm, this
paper selected five large-scale open-source projects as exper-
imental datasets, including Apache Commons, Spring Frame-
work, Eclipse JDT, Hibernate ORM, and Apache Maven.
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These projects cover different programming languages, appli-
cation domains, and development patterns, providing strong
representativeness. The experimental environment was config-
ured with Intel Xeon E5-2680 v4 processors, 64GB memory,
and Ubuntu 18.04 operating system. The algorithm implemen-
tation was based on Python 3.8, using the PyTorch framework
for deep learning model training.

The experiment adopted 10-fold cross-validation, dividing
each project’s historical commits chronologically into training
and test sets, with 80% for training and 20% for testing. To
ensure experimental result reliability, three software engineers
with over 5 years of development experience were invited to
manually annotate comment consistency issues in the test sets
as ground truth. The annotation process used majority voting,
where samples were marked as positive cases when at least 2
annotators identified inconsistency issues.

B. Evaluation Metrics and Baseline Methods

The experiment used Precision, Recall, F1-score, and False
Positive Rate as main evaluation metrics. Three representative
methods were selected as baselines for comparison: Comment-
Watcher (rule-based detection method), BERT-CC (pre-trained
language model-based method), and CCDetector (traditional
machine learning-based method).

C. Experimental Results

Table [[] shows the performance of different methods on
various projects. The proposed algorithm significantly out-
performed baseline methods across all evaluation metrics,
achieving an average precision of 89.2%, recall of 91.9%, F1-
score of 90.5%, and false positive rate controlled at 5.9%.

D. Result Analysis

Experimental results demonstrate that the code change
history-based detection method has significant advantages
over traditional methods. In-depth analysis reveals that the
algorithm’s superiority is mainly reflected in three aspects.
First, by analyzing code evolution history, the algorithm can
accurately identify outdated comment issues caused by code
modifications, which account for 67.8% of detected inconsis-
tency issues. Second, the construction of code-comment asso-
ciation graphs effectively improves the accuracy of association
relationships, reducing false positive detections. Finally, the
multi-dimensional risk scoring mechanism can prioritize de-
tection results according to change complexity and frequency,
improving practical application operability.

Table [ shows the detection effectiveness for different
types of inconsistency issues. The algorithm performs best
on outdated comment issues caused by functional changes,
achieving 93.4% precision, while detection of comment in-
consistencies caused by refactoring is relatively difficult, with
85.7% precision.

Table analyzes algorithm performance under different
project scales. Results show that the algorithm has good scal-
ability, maintaining high detection accuracy when processing
large-scale projects.

https://www.ijetaa.com/article/view/137/

The experiment also found that the algorithm’s time com-
plexity is positively correlated with project commit frequency
and comment density. In projects with high comment den-
sity, the algorithm needs to process more association rela-
tionships, leading to increased computational overhead. To
optimize performance, incremental processing strategies can
be adopted, detecting only newly added or modified code
segments, thereby significantly reducing processing time.

V. CONCLUSION AND FUTURE WORK
A. Main Contributions

This paper addresses the code comment consistency de-
tection problem during software evolution and proposes an
automated detection algorithm based on code change history.
The algorithm fully utilizes evolution information in version
control systems, effectively solving the limitations of tra-
ditional static analysis methods through constructing code-
comment association graphs, analyzing semantic impact of
code changes, evaluating semantic consistency, and establish-
ing multi-dimensional risk scoring mechanisms. Experimental
results show that the proposed algorithm achieves an average
precision of 89.2% and recall of 91.9% on five large-scale
open-source projects, with false positive rate controlled at
5.9%, significantly outperforming existing baseline methods.
The algorithm not only accurately identifies outdated comment
issues caused by code changes but also prioritizes results
according to risk levels, providing developers with practical
code quality management tools.

The technical contributions of this paper are mainly re-
flected in four aspects. First, we designed a code-comment as-
sociation graph construction algorithm based on syntactic and
semantic features, establishing precise mapping relationships
by comprehensively considering spatial position, lexical sim-
ilarity, and structural similarity. Second, we proposed a code
change semantic impact analysis method based on abstract
syntax tree differencing, accurately identifying the impact
scope of code modifications on comment validity. Third, we
integrated natural language processing technology to construct
a comment-code semantic consistency evaluation model, using
pre-trained language models and hybrid encoding strategies to
improve semantic understanding accuracy. Finally, we estab-
lished a comprehensive risk scoring mechanism considering
multi-dimensional factors such as change frequency, modi-
fication complexity, and time decay, achieving quantitative
evaluation and prioritization of comment consistency issues.

B. Practical Significance

The algorithm proposed in this paper has important practical
value, providing software development teams with effective
code quality management tools. In practical applications,
the algorithm can be integrated into continuous integration
pipelines, automatically executing comment consistency de-
tection after each code commit, timely discovering and re-
minding developers to fix comment issues. Through historical
evolution analysis, the algorithm can identify weak points in
project comment quality, helping project managers develop
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON VARIOUS PROJECTS

Project Method Precision Recall F1 FPR
(%) (%) (%) (%)

Proposed Method 89.1 923 90.3 4.6

Apache BERT-CC 85.3 88.7 87.0 12.4
Commons CCDetector 78.9 82.1 80.5 18.7
CommentWatcher 72.1 76.8 74.4 24.3

Proposed Method 88.7 91.8 90.2 6.1

Spring BERT-CC 82.4 86.2 84.3 13.8
Framework  CCDetector 76.3 79.9 78.1 19.5
CommentWatcher 69.8 74.2 72.0 26.1

Proposed Method 89.1 92.7 90.9 6.3

Eclipse BERT-CC 83.7 87.4 85.5 14.2
JDT CCDetector 77.8 81.6 79.7 20.1
CommentWatcher 71.4 75.9 73.6 25.8

Proposed Method 88.3 90.5 89.4 6.7

Hibernate BERT-CC 81.9 85.8 83.8 15.1
ORM CCDetector 75.6 79.3 77.4 21.3
CommentWatcher 68.7 73.1 70.9 27.4

Proposed Method 90.8 92.4 91.6 59

Apache BERT-CC 84.1 87.9 86.0 13.6
Maven CCDetector 78.2 82.4 80.3 19.8
CommentWatcher 70.9 75.6 73.2 25.7

Average (Proposed Method) 89.2 91.9 90.5 59

TABLE II
DETECTION EFFECTIVENESS FOR DIFFERENT TYPES OF INCONSISTENCY
ISSUES
Inconsistency Type Sample Correct Precision  Recall
Count Detections (%) (%)
Functional changes 1,847 1,725 93.4 94.8
Parameter modifications 1,234 1,089 88.2 91.6
Refactoring 892 765 85.7 89.3
Exception handling changes 673 598 88.9 90.7
Performance optimization 445 387 87.0 89.2
TABLE III

ALGORITHM PERFORMANCE UNDER DIFFERENT PROJECT SCALES

Project Scale Code Lines Project  Avg Precision Avg
Range Count (%) Time (min)
Small < 50K 2 91.8 12.3
Medium 50K — 200K 8 89.7 45.6
Large 200K — 500K 12 88.9 128.4
Extra Large > 500K 3 87.2 267.8

targeted improvement strategies. The algorithm’s risk scoring
mechanism can also provide decision support for code review
processes, prioritizing high-risk comment inconsistency issues
and improving review efficiency. Additionally, the algorithm
can serve as an important component of technical debt man-
agement tools, helping development teams quantitatively as-
sess the scale and impact of documentation debt, providing
data support for technical debt repayment decisions.

From the perspective of software maintenance costs, timely
discovery and repair of comment inconsistency issues can
significantly reduce subsequent maintenance workload. Re-
search shows that accurate comments can reduce program
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understanding time by 30-50%, while outdated comments not
only fail to provide help but may also mislead developers into
making wrong decisions. Through automated detection, this
algorithm can substantially reduce manual inspection workload
while improving detection coverage and accuracy. For large-
scale software projects, the value of such automated tools is
particularly prominent, helping development teams maintain
code documentation quality while project scale expands.

C. Limitations and Improvement Directions

Although the algorithm performs well in experiments, some
limitations still need improvement in future work. First, the
algorithm mainly analyzes single-line and block comments,
with limited processing capability for more complex documen-
tation structures such as API documentation and user manuals.
Second, the algorithm’s generalization capability across dif-
ferent programming languages needs further verification, as
current experiments mainly focus on Java projects. Third, for
some implicit semantic changes, such as algorithm complexity
changes caused by performance optimization, the algorithm’s
recognition capability needs improvement. Additionally, the
algorithm’s parameter settings significantly impact detection
effectiveness, and how to automatically adjust parameters ac-
cording to different project characteristics remains a challenge.

Future research directions mainly include the following
aspects. First, extend the algorithm’s applicability to support
more programming languages and comment types, improving
algorithm generality. Second, combine code semantic analysis
technology to improve recognition capability for complex se-
mantic changes, particularly detection of indirect impacts such
as refactoring and performance optimization. Third, introduce
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machine learning technology for automatic parameter opti-
mization, automatically adjusting algorithm parameters based
on project historical data and characteristics. Finally, consider
extending the algorithm to broader software documentation
consistency detection scenarios, such as consistency detection
between requirement documents, design documents, and code,
constructing a more complete documentation quality manage-
ment system.

D. Summary

This paper addresses the critical problem of comment con-

sistency during software evolution, where frequent code modi-
fications often result in outdated comments that mislead devel-
opers and increase maintenance costs. The proposed comment
consistency detection algorithm based on code change history
represents a significant advancement over traditional static
analysis approaches by systematically analyzing version con-
trol system data to identify code-comment inconsistencies. The
algorithm integrates four core technical innovations: a code-
comment association graph that maps relationships between
code elements and comments using spatial, lexical, and struc-
tural similarity metrics; an AST-based differential analysis
method that tracks semantic impact scope of code changes
across software versions; a semantic consistency evaluation
model employing pre-trained language models with hybrid
encoding strategies to assess comment-code alignment; and
a comprehensive risk scoring mechanism that weighs change
frequency, modification complexity, and temporal factors to
prioritize inconsistency issues. Experimental validation across
five major open-source projects demonstrates exceptional per-
formance with 89.2% precision, 91.9% recall, and 5.9% false
positive rate, substantially outperforming existing baseline
methods.
The algorithm’s practical significance extends beyond perfor-
mance metrics, providing development teams with actionable
insights for technical debt management and automated quality
assurance. By accurately identifying 67.8% of inconsisten-
cies caused by code evolution, the tool enables proactive
documentation maintenance and seamless integration into
continuous integration workflows. Future research directions
focus on multi-language support, enhanced semantic change
detection capabilities, and adaptive parameter optimization to
broaden applicability across diverse software engineering con-
texts while maintaining detection accuracy and computational
efficiency.
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