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Abstract—Programmable Logic Controllers (PLCs) are fun-
damental to industrial automation systems. However, traditional
PLC programming requires extensive domain expertise and
significant time investment, while code reusability remains limited
and cross-platform adaptation poses substantial challenges. With
the rapid advancement of Large Language Models (LLMs),
LLM-based code generation offers a promising approach to
address these issues. Nevertheless, existing methods still face
challenges when handling complex industrial scenarios, includ-
ing insufficient domain knowledge, unstable code quality, and
weak cross-platform adaptation capabilities. This paper presents
a multi-agent system for intelligent cross-platform PLC code
generation, featuring a collaborative framework consisting of
four specialized agents: requirement analysis, architecture de-
sign, code generation, and verification-optimization. The method
injects domain knowledge through a Retrieval-Augmented Gener-
ation (RAG) mechanism, employs multi-stage prompt engineering
strategies to guide code generation, and integrates a three-
layer verification mechanism comprising static analysis, dynamic
simulation, and expert review to ensure code quality. Experiments
on the constructed PLC-MultiTask dataset demonstrate that
our method significantly outperforms existing approaches across
multiple metrics, achieving 90.3% compilation success rate,
87.6% test pass rate, and 75.4 CodeBLEU score. In an industrial
case study involving robotic arm handling of refractory bricks,
the system successfully generated approximately 800 lines of
structured text code. Field testing over 720 hours demonstrated
stable operation with 99.2% handling success rate, reducing
development time by 73.3% compared to traditional methods.
These results indicate that multi-agent-based PLC code genera-
tion significantly enhances development efficiency, ensures code
quality, and strengthens cross-platform adaptation capabilities,
offering a novel paradigm for industrial automation software
development.

Index Terms—PLC code generation, Multi-agent systems,
Large language models, Retrieval-augmented generation, Indus-
trial automation

I. INTRODUCTION

As core control devices in industrial automation systems,
Programmable Logic Controllers (PLCs) play irreplaceable
roles in manufacturing, energy, and chemical engineering
sectors. However, with Industry 4.0 and smart manufactur-
ing advancement, modern industrial control systems face un-
precedented challenges in PLC programming complexity and
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reliability [[1]]. Traditional PLC programming methods heavily
depend on domain experts’ experience, resulting in lengthy de-
velopment cycles, high costs, and requiring substantial manual
adaptation when facing diverse industrial scenarios and cross-
platform compatibility requirements. Particularly in applica-
tions involving complex actuators such as robotic arms in high-
temperature, high-intensity operations like refractory brick
handling, PLC program development must simultaneously
address logical control accuracy, safety, real-time performance,
and multi-device coordination constraints [2]. This complexity
creates severe efficiency bottlenecks and quality concerns in
traditional manual programming, substantially restricting rapid
deployment and iterative optimization capabilities of industrial
automation systems.

In recent years, Large Language Models (LLMs) have
achieved breakthrough progress in natural language process-
ing and code generation, providing novel technical pathways
for addressing PLC programming challenges. Representative
LLMs such as GPT, LLaMA, and Claude demonstrate power-
ful code comprehension and generation capabilities, enabling
automatic generation of high-quality program code from nat-
ural language descriptions and making it feasible to transform
engineers’ requirements into IEC 61131-3 standard-compliant
PLC code [3|]. However, directly applying general-purpose
LLMs to PLC code generation faces numerous challenges:
PLC programming languages (such as Structured Text and
Ladder Diagram) are Domain-Specific Languages with signifi-
cant differences from general-purpose programming languages
in syntax structure and programming paradigms; industrial
control systems impose extremely high reliability and safety
requirements necessitating rigorous code verification and test-
ing; and different PLC platforms vary in instruction sets, func-
tion libraries, and programming conventions, making cross-
platform code generation and adaptation critical challenges
requiring resolution.

To address these challenges, this research proposes an
intelligent cross-platform PLC code generation method based
on multi-agent systems. Drawing on multi-agent collabora-
tive frameworks’ advantages in complex task decomposition
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and parallel processing, we construct a cooperative system
comprising requirement analysis, code generation, verifica-
tion and testing, and optimization agents, achieving end-to-
end automated generation from natural language requirements
to executable PLC code. The main contributions include:
(1) designing a multi-agent collaborative architecture that
enhances code generation accuracy and reliability through
inter-agent information exchange and task coordination; (2)
proposing a domain knowledge injection mechanism based on
Retrieval-Augmented Generation (RAG) that enhances LLMs’
understanding of PLC domain knowledge by integrating pro-
gramming manuals, standard function libraries, and historical
code repositories; (3) developing a cross-platform adapta-
tion mechanism that automatically adjusts code generation
strategies according to target PLC platform characteristics,
achieving unified support for mainstream platforms including
Siemens, Rockwell, and Schneider; (4) constructing an evalu-
ation dataset with real industrial scenarios, using robotic arm
refractory brick handling as a representative case study to sys-
tematically validate the method’s effectiveness and practicality
in actual industrial environments.

II. RELATED WORK
A. Traditional PLC Automatic Programming Methods

Automated programming of PLCs has long been an impor-
tant research direction in industrial automation. Early research
primarily focused on model-based code synthesis methods,
which typically require engineers to first establish formal-
ized system models, then generate PLC code through model
transformation techniques. Representative modeling languages
include formal description methods such as Unified Modeling
Language (UML), Petri nets, and temporal logic. While these
methods can improve programming standardization and reli-
ability to some extent, they suffer from limitations including
high modeling barriers, poor flexibility, and difficulty adapt-
ing to complex industrial scenarios. Additionally, rule-based
expert systems have been applied to PLC code generation,
converting process flow descriptions into control logic through
predefined rule bases. However, these approaches heavily
depend on the completeness of domain expert knowledge and
rule accuracy, often requiring substantial manual adjustment
and extension when facing new scenarios [4]]. With the devel-
opment of Industry 4.0, manufacturing systems increasingly
demand flexibility and reconfigurability. Traditional automatic
programming methods can no longer meet the requirements
for rapid iteration and cross-platform deployment, urgently
necessitating new technical paradigms to break through this
bottleneck.

B. Applications of Large Language Models in Code Genera-
tion

The emergence of LLMs has brought revolutionary changes
to automated code generation. Pre-trained models based on
Transformer architecture, such as the GPT series, CodeL-
LaMA, and StarCoder, have acquired powerful code compre-
hension and generation capabilities through pre-training on
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massive code corpora. These models can directly generate syn-
tactically correct program code from natural language descrip-
tions, significantly lowering programming barriers [S[]. Hou et
al. conducted a systematic review of LLM applications in soft-
ware engineering, indicating that LLMs have achieved signif-
icant results in tasks including code completion, vulnerability
detection, and program repair [6]. For code generation tasks,
researchers have proposed various improvement strategies, in-
cluding prompt engineering, Retrieval-Augmented Generation
(RAG), and Parameter-Efficient Fine-Tuning (PEFT). These
methods effectively improve code generation quality and con-
trollability by optimizing input prompts, introducing external
knowledge bases, or performing domain adaptation of models.
However, general-purpose code LLMs still face challenges
when dealing with domain-specific languages, particularly for
low-resource programming languages with scarce training data
and specialized languages in industrial control domains, where
model generation accuracy and reliability often fail to meet
practical application requirements [7]].

C. Exploration of Large Language Models in PLC Program-
ming

For the specialized domain of PLC programming, several
pioneering research efforts have emerged in recent years.
Fakih et al. proposed the LLMA4PLC framework, the first
work to systematically apply LLMs to PLC code generation.
This framework significantly improved PLC code generation
success rates from 47% to 72% through a user-guided iterative
process combined with syntax checkers, compilers, and SMV
formal verification tools [4]. The research also employed Low-
Rank Adaptation (LoRA) techniques for domain fine-tuning
of open-source models and conducted practical validation on
the FischerTechnik manufacturing test platform. Liu et al.
further proposed the Agents4PLC framework, implementing
closed-loop PLC code generation and verification through an
LLM-based multi-agent system. This system includes retrieval
agents, planning agents, coding agents, and verification agents,
capable of automatically completing the entire process from
requirement analysis to code verification [S]]. Koziolek et al.
explored ChatGPT’s application in generating control logic
for industrial process control systems (DCS/PLC), validating
the feasibility of LLMs understanding process flow diagrams
and generating control code [3]. While these research efforts
have collectively advanced intelligent PLC programming tech-
nology, they also reveal common issues: insufficient cross-
platform compatibility support, incomplete domain knowledge
injection mechanisms, and verification mechanisms primarily
remaining at the design level rather than the code level.

D. Applications of Multi-Agent Systems in Industrial Automa-
tion

As a distributed artificial intelligence technology, multi-
agent systems offer broad application prospects in industrial
automation. Wang et al. conducted a comprehensive review
of autonomous agents based on LLMs, noting that multi-
agent collaboration demonstrates unique advantages in com-
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plex task decomposition, parallel processing, and collective
intelligence emergence [8]. In manufacturing systems, re-
searchers have successfully applied multi-agent technology to
scenarios including production scheduling, resource allocation,
and quality control. Lim et al. proposed an LLM-enabled
multi-agent manufacturing system framework that achieves in-
telligent collaboration between machines and human-machine
interaction through natural language interfaces [9]]. This frame-
work enables agents in manufacturing systems to understand
human instructions and make autonomous decisions, signif-
icantly improving system flexibility and adaptability. In the
Industry 4.0 context, Sidorenko et al. investigated automa-
tion platform-independent multi-agent systems in production
resource networks, demonstrating the effectiveness of multi-
agent architectures when addressing complex manufacturing
scenarios [10]. These studies inspire us that introducing multi-
agent collaboration mechanisms into PLC code generation
tasks can better handle the complexity of different stages
including requirement understanding, code generation, and
verification testing through task decomposition and specialized
division of labor. This research, guided by these concepts,
combines LLMs’ code generation capabilities with multi-agent
collaboration mechanisms to construct an intelligent solution
for PLC programming.

III. METHODOLOGY
A. System Architecture

The multi-agent-based cross-platform intelligent PLC code
generation system proposed in this research adopts a layered
collaborative architecture, aiming to achieve end-to-end auto-
mated generation from natural language requirements to exe-
cutable PLC code. The overall system architecture, illustrated
in Figure [I] primarily comprises four core agent modules:
Requirement Analysis Agent, Code Generation Agent, Ver-
ification Agent, and Optimization Agent. These four agents
exchange information and coordinate tasks through Shared
Working Memory and a Coordinator, forming a closed-loop
feedback mechanism. The system also integrates a Domain
Knowledge Base containing PLC programming standards,
platform-specific function libraries, historical code reposito-
ries, and industrial application case libraries, providing nec-
essary domain knowledge support for all agents. In industrial
application scenarios such as robotic arm refractory brick han-
dling, the system must handle complex control logic including
precise position control in high-temperature environments,
force adjustment, collision detection, and exception handling,
imposing extremely high requirements on code generation
accuracy and reliability. Through multi-agent collaboration
mechanisms, the system can decompose complex control
requirements into multiple subtasks handled by specialized
agents, thereby improving overall generation quality and effi-
ciency.

B. Multi-Agent Collaboration Mechanism

The multi-agent collaboration mechanism represents the
core innovation of this system. Drawing on collaborative

https://www.ijetaa.com/article/view/141/

User Interface Layer OQutput Layer

Platform
Configuration

Generated PLC
Code

Verification
Report.

Optinization
Suggestions

Natural Languags
Requirements

¥ A
Multi-Agent Collaboratipn Layer

Requirement Analysis Agent

Code Generation Agent

C X

| Semantic ‘ ‘

Structured |

Extraction Code Tenplate

Farsin i
2 Function Librar:

Control Object
Cantrol Logic
Canstraint Conditian
Performance Metric
Target Platforn

Tnitial Code ]

Optimization Agent Verification Agent

Redundancy
Elinination

Efficiency
Enhancement

Symtax Checking

Cross—platform
Adaptation

Type Checking

Test Case |

Formal Verification

Logic Consistency
Verification

| Code Refinement ‘

A EAY
= A
Knowledge Layer Tool Layer
Historical Code Repository | | Demain Knowledge Base ‘ RAf Retrieval Engine | | Syntax Checker ‘

| Industrial Case Library ‘ | PLC Standards Library

| comier || Tert Gensrator |

Fig. 1. Architecture of Multi-Agent System for Intelligent PLC Code
Generation

strategies from multi-agent systems and adopting the meta-
programming collaboration framework concept proposed by
MetaGPT [11]], we have designed an agent interaction protocol
suitable for PLC code generation tasks. The Requirement
Analysis Agent first performs semantic parsing and structured
extraction of users’ natural language input, identifying key
elements including control objects, control logic, constraint
conditions, and performance indicators. This agent employs
Chain-of-Thought reasoning strategies to decompose complex
requirements into executable subtask sequences and generate
formalized functional specifications. After receiving functional
specifications, the Code Generation Agent retrieves relevant
code templates and function libraries from the domain knowl-
edge base according to target PLC platform characteristics,
utilizing LLMs’ code generation capabilities to produce initial
code. The Verification Agent conducts multi-level verification
of generated code, including syntax checking, type check-
ing, logic consistency verification, and formal verification,
while generating test cases for functional testing. Based on
verification results and performance indicators, the Optimiza-
tion Agent improves and optimizes the code, including re-
dundancy elimination, execution efficiency enhancement, and
cross-platform adaptation. Inter-agent collaboration follows
an improved Contract Net protocol, defining agent roles,
responsibilities, and communication specifications to ensure
rational task allocation and accurate information transmission.

The collaboration efficiency between agents can be quan-
titatively evaluated through the collaboration metric function

C:

N, 1
C=a- success +ﬂ
Ntotal

Niteration
(1 = eration ) (g
+7 ( Ny > (1


https://www.ijetaa.com/article/view/141/

Volume 2, Issue 10

International Journal of Emerging Technologies and Advanced Applications

October, 2025

where Ngyccess represents the number of successfully com-
pleted tasks, N4 represents the total number of tasks, Ti,q
represents average task completion time, N;ieration represents
average iteration count, N,,,, represents maximum allowed
iterations, and «, [, 7 are weight coefficients satisfying
a+ B+~ = 1. This metric function comprehensively considers
three dimensions—task success rate, execution efficiency, and
convergence speed—for evaluating and optimizing multi-agent
system collaboration performance.

C. Prompt Engineering Strategy

For the specialized nature of PLC code generation, this
research has designed a hierarchical prompt engineering strat-
egy to fully leverage LLMs’ code generation capabilities. The
foundational layer employs role-based prompting, positioning
the model as an experienced PLC programming expert in
industrial control, enhancing the model’s understanding and
application of domain knowledge. The task layer adopts
structured task descriptions, decomposing code generation
tasks into four stages: requirement understanding, architecture
design, code implementation, and testing verification, with
each stage accompanied by specific input-output specifications
and example code. The context layer dynamically injects
PLC programming standards, platform-specific documenta-
tion, and historical code snippets relevant to current tasks
through Retrieval-Augmented Generation (RAG) technology,
providing rich contextual information for the model. The
constraint layer defines strict constraints for code generation,
including adherence to IEC 61131-3 standards, avoidance of
deprecated functions, ensuring type safety, and meeting real-
time requirements. The feedback layer designs an iterative
optimization mechanism that generates targeted improvement
prompts based on compiler feedback, verification tool output,
and performance test results, guiding the model to correct
errors and optimize code. This multi-level prompting strategy
effectively enhances code generation accuracy, reliability, and
platform adaptability.

The prompt template design follows the general structure:

2

where R represents role-based prompts, 7' represents task
descriptions, C' represents contextual information, F repre-
sents example code, and F' represents constraint conditions.
The complete prompt P forms structured input for the LLM
through concatenating these five components.

P=(R,T,C,E,F)

D. Code Verification Mechanism

To ensure the reliability and safety of generated PLC
code in actual industrial environments, this research estab-
lishes a multi-level code verification mechanism. The first
layer involves syntax verification, utilizing PLC programming
language parsers to check lexical and syntactic correctness,
promptly detecting spelling errors, syntax errors, and for-
matting issues. The second layer involves static analysis,
employing data flow and control flow analysis techniques to
detect static defects such as uninitialized variables, dead code,

https://www.ijetaa.com/article/view/141/

infinite loops, and potential null pointer references. The third
layer involves type checking, verifying type consistency of
variables, function parameters, and return values to prevent
runtime errors caused by type mismatches. The fourth layer in-
volves logic verification, adopting model checking techniques
to transform PLC code into state transition systems, describing
system properties using temporal logic formulas, and verifying
whether code satisfies safety and liveness properties through
symbolic model checkers (such as NuSMV). The fifth layer
involves simulation testing, running generated code in virtual
PLC environments, simulating various normal and abnormal
operating conditions to verify code functional correctness and
robustness. In robotic arm refractory brick handling applica-
tion scenarios, the verification mechanism particularly focuses
on the correctness of critical functions including position
accuracy, force control, collision detection, and emergency
stop.

The formal definition of code correctness can be expressed
as:

Correct(P) = Syntax(P) A Type(P) A Logic(P) A Safety(P)
3)

where P represents the PLC program under verification,
Syntax(P) represents syntax correctness, Type(P) represents
type correctness, Logic(P) represents logic correctness, and
Safety(P) represents safety properties. Code is considered
correct only when all conditions are simultaneously satisfied.

E. Domain Knowledge Injection Mechanism

Effective injection of domain knowledge is crucial for
improving PLC code generation quality. This research adopts
a hybrid strategy combining Retrieval-Augmented Genera-
tion (RAG) and Parameter-Efficient Fine-Tuning (PEFT). The
RAG module constructs a vector database containing PLC
programming manuals, standard function libraries, platform
documentation, and historical code repositories, employing a
hybrid retrieval strategy combining dense vector retrieval and
sparse keyword retrieval to improve retrieval accuracy and
recall [[12]]. The retrieval process adopts a two-stage ranking
mechanism: first utilizing vector similarity for coarse ranking,
then employing a cross-attention-based reranking model for
fine ranking, ensuring that the most relevant knowledge is in-
jected into the generation process. The PEFT module employs
Low-Rank Adaptation (LoRA) techniques for domain adapta-
tion of LLMs. While maintaining original model parameters
unchanged, only a small number of low-rank matrices are
trained, substantially reducing fine-tuning computational and
storage overhead. The fine-tuning dataset includes manually
annotated PLC code generation task pairs covering mainstream
PLC platforms such as Siemens, Rockwell, and Schneider, as
well as typical application scenarios including robot control,
process control, and motion control. Through the synergistic
effect of RAG and PEFT [13]], the model can both utilize rich
information from external knowledge bases and learn domain-
specific programming patterns and best practices, significantly
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improving code generation quality and cross-platform adapta-
tion capabilities.

The calculation formula for RAG retrieval relevance scores
is:

Score(q, d) = )\'Simde7lse(Q7 d)"’ (1 _/\) Simgparse (Q7 d) 4

where ¢ represents the query vector, d represents the docu-
ment vector, Simge,s. represents cosine similarity of dense
vectors, Simgpqrse Tepresents BM25-based sparse retrieval
scores, and A € [0, 1] is the balance coefficient. Final retrieval
results are sorted in descending order by score, with the
top-K documents injected as contextual information into the
generation process.

IV. EXPERIMENTAL DESIGN
A. Dataset Construction

To comprehensively evaluate the proposed multi-agent PLC
code generation system, this research constructed a com-
prehensive dataset covering multiple industrial application
scenarios, named PLC-MultiTask. The dataset includes three
main categories: basic control tasks, complex industrial sce-
narios, and cross-platform adaptation tasks. Basic control tasks
cover fundamental programming patterns including sequential
control, conditional control, loop control, timer control, and
counter control, collecting 150 annotated samples. Complex
industrial scenarios include robotic arm control, conveyor
belt systems, filling production lines, temperature control
systems, and material handling systems, collecting 200 an-
notated samples, with 50 samples dedicated to robotic arm
refractory brick handling scenarios. Cross-platform adaptation
tasks target mainstream PLC platforms including Siemens
S7-1200/1500, Rockwell ControlLogix, Schneider Modicon
M340, and CODESYS, collecting 80 platform-specific code
samples for each platform. The dataset construction process
includes five stages: requirement description collection, man-
ual code writing, expert review, platform testing verification,
and quality annotation, ensuring each sample possesses ac-
curate requirement descriptions, executable reference code,
and detailed functional annotations. All code adheres to the
IEC 61131-3 standard and has passed functional testing in
corresponding PLC simulation environments.

B. Baseline Methods

To comprehensively evaluate the effectiveness of the pro-
posed method, five baseline methods were selected for compar-
ative experiments. The first is the Pure Large Language Model
method (Pure-LLM), directly using GPT-4 and CodeLLaMA-
34B models for zero-shot code generation without any do-
main adaptation or knowledge enhancement. The second is
the Prompt-Enhanced method, applying carefully designed
prompt templates to Pure-LLM, including role positioning,
task descriptions, and example code, but without using RAG or
multi-agent mechanisms. The third is the RAG-Only method,
employing a single LLM combined with RAG technology,
retrieving relevant information from domain knowledge bases
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to assist code generation but not adopting multi-agent collab-
oration. Through systematic comparison with these baseline
methods, we can fully validate the effectiveness and superi-
ority of the proposed multi-agent collaboration mechanism,
prompt engineering strategy, and domain knowledge injection
method.

C. Evaluation Metrics

This research adopts a multi-dimensional evaluation metric
system to comprehensively measure PLC code generation
system performance. Syntax correctness metrics include Com-
pilation Success Rate (CSR) and Syntax Error Rate (SER) to
evaluate basic syntax correctness of generated code. Semantic
similarity metrics employ CodeBLEU [14] and BLEU scores
to measure similarity between generated code and reference
code in syntax structure and semantic expression. Functional
correctness metrics include Test Pass Rate (TPR) and Function
Completeness (FC), validating the degree of functional imple-
mentation of generated code through predefined test case sets.
Code quality metrics include Cyclomatic Complexity (CC),
Lines of Code (LOC), and Maintainability Index (MI), evalu-
ating structural quality and maintainability of generated code.
Efficiency metrics include Generation Time (GT), Iteration
Count (IC), and Verification Time (VT), measuring system ex-
ecution efficiency. Cross-platform adaptability metrics evaluate
portability and compatibility of generated code across different
PLC platforms, quantified using Platform Adaptation Success
Rate (PASR). Notably, although BLEU and CodeBLEU are
widely used evaluation metrics in code generation, research
has shown these metrics have certain limitations in correlation
with human judgment. Therefore, this research simultaneously
adopts functional correctness metrics (such as test pass rate)
as supplements to more comprehensively evaluate code quality
[15]. These metrics constitute a comprehensive evaluation
system across four dimensions: correctness, quality, efficiency,
and adaptability.

The calculation formula for CodeBLEU is:

CodeBLEU = «-BLEU+3-BLEU ¢ignt+7v-Match g s7+6-Matchp p

&)

where BLEU is the standard BLEU score, BLEU ,¢ignt
is the weighted BLEU score (assigning higher weights to
keywords), Match g7 is the abstract syntax tree matching
degree, Matchpr is the data flow matching degree, and «,
B, 7, § are weight coefficients satisfying o+ 5 +~v+ 6 = 1.

D. Experimental Results

Table [I] presents overall performance comparisons of differ-
ent methods on the PLC-MultiTask dataset. As shown, the
proposed multi-agent system achieves optimal performance
across all metrics. In compilation success rate, our method
reaches 90.3%, improving by 43.3 percentage points compared
to the Pure-LLM method. In test pass rate, our method
achieves 87.6%, significantly outperforming all baseline meth-
ods, demonstrating effective assurance of generated code
functional correctness. The CodeBLEU score reaches 75.4,
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON PLC-MULTITASK DATASET

Method CSR TPR CodeBLEU BLEU GT IC PASR
(%) (%) (s) (%)
Pure-LLM (GPT-4) 47.0 382 54.3 48.7 124 1.0 526
Pure-LLM (CodeLLaMA) 52.8 42.6 58.9 523 10.8 1.0 483
Prompt-Enhanced 745 683 66.7 61.2 156 23 689
RAG-Only 81.7 762 722 67.8 194 28 745
Ours (Multi-Agent) 90.3 87.6 75.4 712 237 32 852

Note: CSR - Compilation Success Rate, TPR - Test Pass Rate, GT - Generation Time, IC - Iteration Count, PASR - Platform Adaptation Success Rate

TABLE I
PERFORMANCE BREAKDOWN OF DIFFERENT METHODS ON THREE TASK CATEGORIES

Method Basic Control

Complex Industrial

Cross-Platform  Robotic Arm

CSR/TPR (%) CSR/TPR (%) PASR (%) FC (%)
Pure-LLM (GPT-4) 64.7/58.0 38.5/28.0 52.6 32.0
Prompt-Enhanced 82.0/76.7 61.5/52.5 64.8 48.0
RAG-Only 85.3/80.7 72.0/65.5 70.1 68.0
Ours (Multi-Agent) 90.7/86.0 82.5/75.3 79.2 85.0

Note: CSR - Compilation Success Rate, TPR - Test Pass Rate, PASR - Platform Adaptation Success Rate, FC - Function Completeness

improving by 3.2 percentage points compared to the RAG-
Only method, indicating that the multi-agent collaboration
mechanism better captures code syntax and semantic features.
Regarding generation time, our method averages 23.7 seconds,
slightly higher than the Pure-LLM method, but considering
the significantly improved code quality, this time overhead
is acceptable. The platform adaptation success rate reaches
85.2%, demonstrating the effectiveness of the cross-platform
adaptation mechanism. These results fully validate the superi-
ority of the proposed method, particularly demonstrating clear
advantages in complex industrial scenarios and cross-platform
adaptation tasks.

Table |lI| presents detailed performance breakdown of differ-
ent methods across three task categories. We observe that our
method achieves 90.7% compilation success rate and 86.0%
test pass rate on basic control tasks, approaching perfect
performance, indicating the system handles basic program-
ming patterns well. In complex industrial scenario tasks, our
method achieves 82.5% compilation success rate and 75.3%
test pass rate, still maintaining significant advantages over
baseline methods, demonstrating the effectiveness of multi-
agent collaboration mechanisms in handling complex control
logic. In cross-platform adaptation tasks, our method’s plat-
form adaptation success rate reaches 79.2%, notably higher
than other methods, indicating the system effectively handles
differences between PLC platforms, generating code with good
portability. Particularly noteworthy, in the most challenging
robotic arm refractory brick handling scenario, our method’s
function completeness reaches 85.0%, fully validating the
system’s practical value in real industrial applications. These
results demonstrate that the proposed method not only out-
performs existing methods in overall performance but also
maintains consistent advantages across all subdivided task
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categories.

V. CASE STUDY: ROBOTIC ARM REFRACTORY BRICK
HANDLING SYSTEM

A. Application Scenario Description

As critical materials for high-temperature industrial fur-
naces, refractory bricks face harsh working environments
including high temperature, high dust, and high intensity
during production and handling processes. Traditional manual
handling methods are not only inefficient but also pose serious
occupational health risks, with workers experiencing long-term
exposure to high-temperature environments easily developing
conditions such as heat stroke. To address this issue, a large
refractory materials manufacturing enterprise introduced an
automated robotic arm handling system requiring the system
to accurately grasp refractory bricks weighing 5-50 kilograms
in 1200°C high-temperature environments, transferring them
from production lines to designated stacking positions while
ensuring handling process safety and brick integrity. The
system’s control logic is extremely complex, requiring coor-
dination of six-degree-of-freedom robotic arm precise motion
control, real-time force sensor feedback processing, collision
detection and avoidance, temperature monitoring and alarm-
ing, and interlock protection with upstream and downstream
production equipment subsystems. As the core controller, the
PLC must achieve millisecond-level real-time response while
meeting strict requirements of industrial safety standards. This
application scenario poses extremely high challenges for PLC
code generation systems, requiring not only functional cor-
rectness but also real-time performance and safety assurance,
making it an ideal test case for validating intelligent code
generation technology practicality.


https://www.ijetaa.com/article/view/141/

Volume 2, Issue 10

International Journal of Emerging Technologies and Advanced Applications

October, 2025

B. System Implementation and Code Generation

For the complex requirements of robotic arm refractory
brick handling, the proposed multi-agent system demonstrated
excellent code generation capabilities. The Requirement Anal-
ysis Agent first conducted deep parsing of user-provided
natural language requirements, extracting key control elements
including six-axis robotic arm motion trajectory planning,
gripper opening/closing control, force sensor threshold set-
tings, collision detection trigger conditions, temperature mon-
itoring alarm logic, and handshake signals with conveyor
belt systems. The system identified that this task involves 12
input signals (including start button, emergency stop button,
position sensors, force sensors, temperature sensors, etc.) and
18 output signals (including motor control, pneumatic valve
control, indicator lights, alarms, etc.), automatically generating
detailed functional specifications and state transition diagrams.
Based on functional specifications, the Code Generation Agent
retrieved relevant motion control templates, force control algo-
rithms, and safety interlock logic from the domain knowledge
base, generating a complete PLC program including main
program, motion control subroutines, force control subrou-
tines, collision detection subroutines, and exception handling
subroutines, totaling approximately 800 lines of Structured
Text code. The Verification Agent conducted multi-level ver-
ification of generated code, passing syntax checking, type
checking, and logic verification, successfully passing 36 test
cases in virtual PLC environments including normal handling
processes, collision detection, force overload protection, and
emergency stop. The Optimization Agent further optimized
the code, eliminating three redundant calculations, optimizing
motion trajectory smoothness, and performing specific adapta-
tion for the Siemens S7-1500 platform. The finally generated
code operates stably on actual PLC controllers, meeting all
functional and performance requirements.

C. Experimental Verification and Performance Analysis

To validate generated code effectiveness in actual industrial
environments, month-long testing was conducted at the enter-
prise production site. During testing, the robotic arm system
operated cumulatively for 720 hours, completing over 28,000
refractory brick handling tasks with a 99.2% success rate. Only
22 failures due to brick damage-caused grasping failures and 1
safety shutdown triggered by communication delays occurred,
far below the enterprise-required 5% failure rate threshold.
The system’s average handling cycle was 7.8 seconds, im-
proving 5.8 times compared to the manual handling average
of 45 seconds, substantially increasing production efficiency.
Regarding safety, the system’s collision detection response
time was 8 milliseconds, and emergency stop response time
was 15 milliseconds, both meeting industrial safety standard
requirements. The temperature monitoring system successfully
intercepted three high-temperature anomaly events, preventing
equipment damage and safety accidents. Regarding code qual-
ity, the generated PLC program received an average rating of
8.5 out of 10 from professional engineer reviews, with engi-
neers considering the code well-structured, logically rigorous,
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TABLE 111
CODE QUALITY COMPARISON IN ROBOTIC ARM REFRACTORY BRICK
HANDLING CASE

Dimension Manual Ours Pure-LLM
Development Time (hrs) 120 32 8
Lines of Code (LOC) 1050 820 650
Compilation Success 100% 100% 45%
Test Pass Rate 100% 97.2% 38.9%
Code Quality Score 9.5/10 8.5/10 4.2/10

Maintainability Index 88 82 52
Success Rate (Field) 99.8% 99.2% N/A

and thoroughly commented, meeting industrial application
quality standards. Table [III| presents detailed comparisons of
code generated by our method with manually written code and
other automatic generation methods in this case. As shown,
our method achieves ideal balance in functional implementa-
tion, code quality, and development efficiency, validating the
feasibility and practical value of the multi-agent PLC code
generation system in real industrial applications.

D. Limitation Analysis

Although the proposed multi-agent PLC code generation
system has achieved positive results in industrial applications,
several limitations require further improvement. In complex
motion trajectory optimization, generated code efficiency has
not reached manual optimization levels when handling multi-
constraint planning problems, requiring integration of profes-
sional motion planning algorithms, while the system’s con-
servative exception handling strategy tends to trigger safety
shutdown mechanisms rather than implementing intelligent
fault tolerance, affecting system availability and necessitat-
ing enhanced fault diagnosis and recovery capabilities. From
language support perspective, the system has primarily op-
timized Structured Text with insufficient support for other
IEC 61131-3 programming languages such as Ladder Diagram
and Function Block Diagram, limiting applicability across
different scenarios, while domain knowledge base maintenance
faces challenges in covering new PLC platforms and emerg-
ing applications, directly impacting code generation quality
and requiring more efficient knowledge update mechanisms.
Multi-agent collaboration mechanisms, while improving code
quality, correspondingly increase computational overhead and
system complexity, potentially creating deployment difficulties
in resource-constrained edge computing environments, and
the system’s limited interpretability struggles to provide clear
causal analysis and specific improvement paths when code
generation fails or quality issues arise, posing challenges for
enhancing engineer user experience.

VI. CONCLUSION

This research addresses the complexity of PLC program-
ming in industrial automation and the high costs of manual
programming by proposing a multi-agent-based cross-platform
intelligent PLC code generation method. The method con-
structs a collaborative system comprising requirement analysis
agents, code generation agents, verification and testing agents,
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and optimization agents. Combined with Retrieval-Augmented
Generation technology and Parameter-Efficient Fine-Tuning
strategies, it achieves end-to-end automated generation from
natural language requirements to executable PLC code. The
system designs hierarchical prompt engineering strategies,
establishes multi-level code verification mechanisms, and
achieves unified support for mainstream PLC platforms in-
cluding Siemens, Rockwell, and Schneider. Experiments on
the PLC-MultiTask comprehensive dataset demonstrate that
our method significantly outperforms existing methods across
key metrics including compilation success rate, test pass rate,
CodeBLEU score, and platform adaptation success rate. In a
real industrial case of robotic arm refractory brick handling,
system-generated code underwent one month of field testing
validation, achieving 99.2% success rate and reducing develop-
ment time by 73.3% compared to manual programming, fully
demonstrating the method’s practicality and reliability.

This research constructs a multi-agent collaborative ar-
chitecture for PLC code generation, achieving inter-agent
information exchange and task coordination, effectively im-
proving code generation accuracy and reliability, providing a
novel technical paradigm for intelligent code generation of
domain-specific languages. The designed domain knowledge
injection mechanism integrating RAG and PEFT significantly
enhances LLMs’ understanding and application capabilities for
PLC programming knowledge, providing valuable reference
for code generation research in low-resource programming
languages. The established comprehensive code verification
system conducts multi-level verification from syntax, type,
logic to safety, ensuring generated code reliability and safety in
industrial environments. Implementation of the cross-platform
adaptation mechanism supports unified code generation for
multiple mainstream PLC platforms, reducing equipment mi-
gration costs and technical barriers for industrial enterprises.
Through real industrial case validation, this method demon-
strates excellent engineering practical value, accumulating
valuable experience for intelligent code generation technology
implementation in industrial domains. Future research will fur-
ther enhance system multi-modal understanding capabilities,
reinforcement learning mechanisms, and lightweight deploy-
ment capabilities, promoting PLC programming toward higher
levels of intelligence and automation, providing stronger tech-
nical support for Industry 4.0 and smart manufacturing.

Future work will advance the proposed system through
several interconnected directions. The research will enhance
multi-modal understanding capabilities to enable direct PLC
code generation from graphical representations such as P&IDs,
timing diagrams, and state machine diagrams, while incor-
porating reinforcement learning mechanisms for autonomous
optimization. System capabilities will expand to support all
five IEC 61131-3 programming languages with automatic
conversion functionality, explore mixed programming modes
integrating high-level languages, and develop intelligent code
review modules for automatic detection of performance bottle-
necks and safety hazards. An open community and knowledge
sharing platform will aggregate industrial cases and best prac-

https://www.ijetaa.com/article/view/141/

tices, while lightweight multi-agent collaboration mechanisms
will enable edge-side intelligent code generation. Finally,
strengthening human-machine collaboration through intuitive
interaction interfaces will support engineers in efficiently re-
viewing and tuning generated code, achieving deep integration
of human expertise with artificial intelligence capabilities.
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